tao-of-tmux Documentation
%1 v1.0.2

Tony Narlock

2020 £ 04 A 18 H

Contents

1 i
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

FKFARF

F548E . (Formats)
iR (Errata) {#terrata}
B . .
AR tmux 2SS

tmux fJiR {#thinking-tmux}
terminal [17 L4 PSR

AL AL PE

1EG Gist ey

Powerful combos

Terminal ALY (fundamentals) {#terminal-fundamentals}

POSIX FrifE

Terminal interface

FHi&EH (Practical usage) {#practical-usage}
AR (prefix key) {#prefix-key}
Session persistence and the server model

4.3
4.4

it 55
5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8

b
6.1
6.2
6.3
6.4
6.5

W
7.1
7.2
7.3
7.4
7.5
7.6
7.7

[1]73
8.1
8.2
8.3
8.4
8.5
8.6

LA
9.1
9.2
9.3
9.4
9.5

It’ sall commands e e e e e e e

(Server) {#server}

What? tmux is a Server? e e
Zero config needed Lo e e
Stayin’ alive oL e e
Servers 27 SESSIONS . v v v v e e e e e e

How servers are “mnamed” e

(Sessions) {#sessions}

BIEZE (SeSSIONS) L e
tmux P E (sessions) L.
TG ETT o o

(Windows) {#windows}

Creating windows oL
Naming windows o o e e e e e e e e e
Traversing windows e e e e e e
Moving windowsol e e e e
Layouts {#window-layouts} L
Closing windows v v it i e e e e e e e e e e e e e

SUMIMATY .« v v v vt e et e e e e e e et e e e e e e e e e e e

(Panes) {#panes}

BIBEHTIAR . - o . o o
WM EY (Traversing Panes) {#pane-traversal}
HHER/IME (Zoom in) {#zoom-pane}
WM K/ (Resizing panes) {#resizing-panes}

(Configuration) {#config}

ERE S {#reload-configh
FOE ORI TAERRITE © L o
RSV (Server options) o o
STECE (Session options) L e
ZEE (Window options) o o0

21
22
22
23
23
24
24
24
25

27
29
29
30
31
31

33
34
34
35
35
36
38
39

41
42
42
42
43
43
43

9.6 PRIEELIE (Keybindings) o o oo e

10 JRZ&F: (Status bar) HINPEIE Y {#status-bar}
10.1 BIDIRESHIFRD - - o o o
10.2 HEAFIEIE] © . o o
10.3 Shell command output e
10.4 Styling o e e e
10.5 Styling while using tmux L. e e e e e e
10.6 Toggling status line L
10.7 Example: Default config.
10.8 Example: Dressed up {#status-bar-example-dressed-up}
10.9 Example: Powerline e

10.10 SUMMATY « . v v v v vt e e e e e e e e e e e e e e e

11 tmux AJHIALL (Scripting) {#scripting-tmux}
11.1 455 (Aliases) {#aliases} o i i i i
11.2 Pattern matching {#fmmatch} L
11.3 Targets {#targets} L e e
11.4 Formats {#formats} L
11.5 Controlling tmux {#send-keys} L
11.6 Capturing pane content {#capture-pane} L oo
117 Summary o e e e e e e

12 /pEiY5 (tips and tricks) {#tips-and-tricks}
12.1 Read the tmux manual in style L L
12.2 Log tailing o e e e e
12.3 File watching {#file-watching} L
12.4 Session Managers {#session-manager}o
12.5 More code and examples {#example-projects} Lo oL
12.6 tmux-plugins and tpm oL L e e

13 Mgkl (Takeaway) {#takeaway}

14 Ftsk: % (cheatsheets) {#appendix-cheatsheets}
14.1 4 (Commands) e

14.2 (PeEgE) Keybindings
14.3 Formats {#appendix-formats} L L

15 Fifa%: 2%t tmux (installation) {#appendix-installation}
151 macOS / OS X . .o oo
15.2 Linux e e e e e e e
15.3 BSD . . . e e e e e
15.4 Windows 10 L L e e

51
o1
51
52
53
54
55
55
55
56
57

59
59
59
60
63
65
66
67

69
69
70
71
73
74
74

77

79
79
79
80

81
81
82
82
83

16 Fff%: tmux ff Windows 10 ffi[l] {#appendix-windows-bash} 85

16.1 383 MSYS2 . o 85

16.2 Window [Linux T 2ZE . .« o o v o e e 87

17 Bitsk: B8 (troubleshooting) {#appendix-troubleshooting} 95

17.1 58 AF vim GG H P E353: Nothing in register * iR 95
17.2 |A)/#l: tmuxp: command not found 1 powerline: command not found {#troubleshoot-

site-paths} . . .o 95

18 Indices and tables 97

tao-of-tmux Documentation, & %5 v1.0.2

Tao of tmux HJ{E#H J& Tony Narlock,
YEF T E <https://leanpub.com /the-tao-of-tmux/read >

PR ULE . B, BODEEE, WA iBaeiee, WalthBhEieE, 7E issue bBUL—IGHAT. Wl
T H B R AT https://github.com/talengu/tao-of-tmux-Chinese/issues

talen move it to sphinx.

Contents:

Contents 1

https://leanpub.com/the-tao-of-tmux/read
https://github.com/talengu/tao-of-tmux-Chinese/issues

tao-of-tmux Documentation, K% v1.0.2

2 Contents

CHAPTER 1

=
jill[3

R IR CEFEES A tmux, FICEFRAIMG D 280, RMO= %57, fEFl. XEETF
BA “QWERTY” BB .

RUECEE 28 L) U i R MR R sl b 1, (HERATI 2 D 1) 9 IRC S0 iy P S A0SR AEAE TR = 51
Frb o AT A terminal FHBUS ARV, FATHEH ConnectBot 4% = ik 4548 3l 111217 screen(1)
FEOFERIIRE 0. 7E5R 2 5, FROTWEEHMMEER T, |avay RESTHSBE S, TATIFIHTAE.

AR, EEFRATEX T AT, ATA N2 AT, AR K RML BRI TLT.

BRSO R, HRRATEEA AR T A S 85— MR ETE . oA NS IR AT, (A — A
o, FATBELRARAT N AT LA T3, PASEIE IR H .

MBETG IR Z S0, SO P SHUE R, HSRREIE— Ty, XMHEESA KA. B,
HIEG AP BT PR, A BARMRIEA IR toux, FRECEAER, HEFR tmux 214
2, SR BN

L1 XF&H
1

WIT5E M E The Tao of tmux F A E _ET A tmux, XM EHEET tmuxp session manager
o SR . e, RIFERET T, BB, P75, BZih 7414,

R tmux 135, A0 man FORFH manpage for tmux. SR Manpages R AEREH R GAR
&, MATEZ R —MSH P EXABHRELE T OASFEMTIEAMEA tmux 2K, FEXAFLR,

FATRF tmux HERIHBAFS, M servers F| panes. YIRS ALFE—LL terminal FJELAHHAIH HRBEITRLE 5
¥ WSMAWFLIFESE , Bt 72430 terminal §9 TAEGAE (workflows).

=

https://en.wikipedia.org/wiki/GNU_Screen
https://tmuxp.git-pull.com/en/latest/about_tmux.html
https://github.com/tony/tmuxp
http://man.openbsd.org/OpenBSD-current/man1/tmux.1

tao-of-tmux Documentation, &% v1.0.2

tmux EARA M. B TR HER -, BR TEITRSCRBHR, S T2 06 tmux f{EE S

{A:configuration, FFFHMF tmux session manager.

IR 24 77E tmux pane LAY vim, 530,

I am writing this from vim running in a tmux pane, inside a window, in a session running on a

tmux server, through a client.
XA B — A AN EESEARRTR BAE— O R R Ay AT AN & i 22 i S ORI AR B E 195
BB OHRIERE H O =R tmux MES . WER AR IR A 23 tmux, A EAR B Installation sectionFh4r.

AF5 twitter @TheTaoOfTmux £rF W B E 4 I 3¢ share on Twitter!

1.2 KEEER 15 EA

SRS AN 1ike this , XAFEANALH L.
A H3LH8 terminal (4 (command). $ echo 'like this'. FEZ i AN ANFEEH A dollar £F

Fo MAHEEZ X T dollar $2/R4FE X, RIEAAE Super User Wik i What is the origin of the UNIX
$ (dollar) prompt?,

TE tmux 7, PREEGE (shortcuts) FFEAT MR prefix key FHABHRA G L. W Prefix + d fAFNF
M session FIiES (detach), Wid tmux BRIA <Ctrl-b>, WA PAF M. XEENETLE the prefiz key T
I configuration 3T .

1.3 ABFEAR

%2 installationFIERM AT ITEMI SRR/ . L BERILEMN G258, HEEHRENIILERD, Wl
WIFF 2 S B N . A —SERRIRAFETY, A tmux on Windows 100 FRAESCREI 7 —Le#k, Jrfiipes
AT LEESE .

tmuz #7137 (Thinking in tmuz) FEYE—F tmux FIZHEEFIE AAHLA GUI R#/E. RS T tmux KHEA
P, TS S e Ry S A

Terminal Fundamentals shows the text-based environments you’ 1l be dealing with. It’ s great for those new
to tmux, but also presents technical background for developers, who learned the ropes through examples

and osmosis. At the end of this section, you’ 1l be more confident and secure using the essential components

underpinning a modern terminal environment.
Practical usage covers common bread-and-butter uses for you to use tmux immediately.

Server gives life to the unseen workhorse behind the scenes powering tmux. You’ 1l think of tmux differently

and may be impressed a client-server architecture could be presented to end users so seamlessly.

Sessions are the containers holding windows. You’ 1l learn what sessions are and how they help organize

your workspace in the terminal. You’ 1l learn how to manipulate and rename and traverse sessions.

4 Chapter 1. BB

https://github.com/tony/tmux-config
https://tmuxp.git-pull.com
https://twitter.com/TheTaoOfTmux
https://twitter.com/intent/tweet?text=I%27m%20reading%20The%20Tao%20of%20tmux%20online%20at&url=https://leanpub.com/the-tao-of-tmux/read&hashtags=tmux&via=TheTaoOfTmux
https://superuser.com/questions/57575/what-is-the-origin-of-the-unix-dollar-prompt
https://superuser.com/questions/57575/what-is-the-origin-of-the-unix-dollar-prompt
http://man.openbsd.org/OpenBSD-current/man1/tmux.1

tao-of-tmux Documentation, & %5 v1.0.2

Windows are what you see when tmux is open in front of you. You’ Il learn how to rename and move

windows.

Panes are a terminal in a terminal. This is where you get to work and do your magic! You’ 1l learn how to

create, delete, move between, and resize panes.

Configuration discusses customization of tmux and sets the foundation for how to think about .tmux.conf

SO you can customize your own.

Status bar and styling is devoted to the customization of the status line and colors in tmux. As a bonus,

you’ 1l even learn how to display system information like CPU and memory usage via the status line.
Scripting tmuz goes into command aliases and the advanced and powerful Targets and Formats concepts.

Technical stuff is a glimpse at tmux source code and how it works under the hood. You may learn enough
to impress colleagues who already use tmux. If you like programming on Unix-like systems, this one is for

you.

Tips and tricks wraps up with a whirlwind of useful terminal tutorials you can use with tmux to improve

day to day development and administration experience.

Cheatsheets are organized tables of commands, shortcuts, and formats grouped by section.

1.4 3IT®

If you enjoy my learning material or my open source software projects, please consider donating. Donations
go directly to me and my current and future open source projects and are not squandered. Visit http:

//www.git-pull.com/support.html for ways to contribute.

1.5 FERK (Formats)

PAFE Leanpub I Amazon Kindledg 4 .
PR TESCHUAR free on the web, HISCHUAS https://tao-of-tmux.readthedocs.io

1.6 B)iRi%BEA (Errata) {#errata}

This is my first book. I am human and make mistakes.
If you find errors in this book, please submit them to me at tao.of.tmux nospam git-pull.com.
You can also submit a pull request via https://github.com/git-pull/tao-of-tmux.

I will update digital versions of the book with the changes where applicable.

14. ITH® 5

http://www.git-pull.com/support.html
http://www.git-pull.com/support.html
https://leanpub.com/the-tao-of-tmux
http://amzn.to/2gPfRhC
https://leanpub.com/the-tao-of-tmux/read
https://tao-of-tmux.readthedocs.io/zh_CN/latest/
https://github.com/git-pull/tao-of-tmux

tao-of-tmux Documentation, K% v1.0.2

1.7 Rt

Thanks to the contributors for spotting errors in this book and submitting errata through GitHub. In

addition, readers like Graziano Misuraca, who looked through the book closely, providing valuable feedback.

Some copy, particularly in cheatsheets, comes straight out of the manual of tmux, which is ISC-licensed.

1.8 AHFERFI tmux BIEZ)

AFETF tmux 2.3, KT 2016 4£ 9 H.
2017 4E 1 H, YE¥& %A% Leanpub, & —MHEHRALE Kindle,

tmux does intermittently receive updates. I’ ve accommodated many over the past 5 years on my personal
configurations and software libraries set with continuous integration tests against multiple tmux versions.
Sometimes, publishers overplay version numbers to make it seem as if it’ s worth striking a new edition of

a book over it. It’ s effective for them, but I' d rather be honest to my readership.

If you’ re considering keeping up to date with new features and adjustments to tmux, the CHANGES file in

the project source serves as a way to see what’ s updated between official releases.

6 Chapter 1. BB

https://github.com/git-pull/tao-of-tmux/graphs/contributors
https://github.com/tmux/tmux/blob/master/COPYING
https://github.com/tony/libtmux/blob/master/.travis.yml
https://github.com/tmux/tmux/blob/master/CHANGES

CHAPTER 2

tmux]I {#thinking-tmux}

eV R, AH AR A £ -
L Ay AT FRAH.
2. T A H.
tmux, BEAFFES terminal Y H, BIPAKF terminal 43 EIR L L,

tao-of-tmux Documentation, &% v1.0.2

server

session

pane pane pane pane pane pane
window, window, window
pane pane pane pane pane pane

pane || pane pane || pane
window. window.
pane || pane pane || pane

;‘)ahe ‘pa“r‘u‘e ;:ane péne pane ‘"pa‘n{e
~window. ‘window, ~window.

SeSSion SeSSion v;‘)ahe paﬁe bane pane ”pahe pane

pane | pane pone | pane pane ne pane || pane
window: window: ol window:
pane || pane P pane | pane

paﬁe ‘pa‘ne }Jane baﬁe ‘Lpa‘ﬁe ‘pane
window, window. —window,
pane pane pane pane pane pane

pene | pane

> ne
window. window.
pine | pane | pame || pane

> command > command

pane pane

window

> command > command

pane pane

2.1 terminal Y& OETEZE

tmuwx X PR GV, R windows [desktop XiF GUI Wl SCFHRIMA —ASEmiiy A, 1]
tmux, fRATPA:

ZAES AT, AT AR

[{]— A A Z MR ARTT (17308 pane)
HE— A LAEZTE (session) HA[AAZAE 1 (window)
B windows SLI—A4F, FJLATE (session) FAHE)
AR ETE M ST, AT PATE tmux RRRASASEC—AS H 39 /it Ta] o

8 Chapter 2. tmux #JiR {#thinking-tmux}

tao-of-tmux Documentation, & %5 v1.0.2

6:29 PM
!E‘ri]- Fr|827 PM Q

— i —

2.2 ZEFZLE

tmux 7E—/ N TR 24> termianl, “tmux” 4553 H Terminal Multiplexer.
b T — B LAz A, tmux IS ARVFEREIERIEEEZ S B 07 FEINEE tmux 235 1

AR, AR DA, REEAIR S . W EEMEA BOR, Br MR se e r#sae fr, By SSH i
FEEAEBR R RS AR RS ETAE, W X

T A L DL 3 5
o 1F pane a H3i5f7 “$tail-F/var/log/apache2/error.log” ¥ [1EFE AR 1) H i 30

47 file watcher, U watchman, gulp-watch, grunt-watch, guard, 8, entr, I SCETF ik, A% E

rebuild LESS or SASS files, minimize CSS and/or assets and static files
— lint with linters, like cpplint, Cppcheck, rubocop, ESLint, or Flake8
— rebuild with make or ninja
— reload Express server
— BT E XA
o 1BF7—" text editor, #l vim, emacs, pico, nano, %%, izf7—FE pane, FHALW S, — CLI
commands , H—AHFKM] make B{E ninja M HATHRIE.

2.2. SEFNE 9

https://en.wikipedia.org/wiki/X.org_server
https://github.com/facebook/watchman
https://github.com/gulpjs/gulp/blob/master/docs/API.md#gulpwatchglob-opts-tasks
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/guard/guard
http://entrproject.org/
https://github.com/google/styleguide/tree/gh-pages/cpplint
http://cppcheck.sourceforge.net/
https://github.com/bbatsov/rubocop
http://eslint.org/
http://flake8.pycqa.org/en/latest/
https://ninja-build.org/
http://expressjs.com/

tao-of-tmux Documentation, K% v1.0.2

[NON) 2. tmux

(BY
(SDL_INIT_VIDEO),
CIMG_INIT_PNG),
(. Game
SDL_WINDOWPOS_CENTERED, HandleEvent
SDL_WINDOWPOS_CENTERED, MainLoop
SCREEN_RECT . w,
SCREEN_RECT .h,
SDL_WINDOW_RESIZABLE), LoadResources
(il <{SDL2pp: :Renderer>(main
vindow,

{spdlog: :logger>& console)

SDL_RENDERER_ACCELERATED | SDL_RENDERER_TARGETTEXTURE)),
(i

<{ResourceManager>()),
<{StatService>()),
B E <InputManager>()),
(console) {
console-> ();

(renderer, resource_manager)
stage = R <{LevelStage>(renderer, resource_manager,
);
<p [unix/CPP] [/Users/me/work/c++/sdl2-playproject/srclB6,1 38%Z [Namel main.cpp

-- Configuring done libsystem_kernel.dulib __semwait_signal
-— Generating done -> BxT7fffadbbefde <+18>: jae Bx7fffalbbefed
—-— Build files have been written to: /Users/me/work/ ; <+20>
c++/sdl2-playproject/build Bx7fffadbbefed <+12>: movqg Zrax, Zrdi
ninja -C build Bx7fffadbbefed <+15>: jmp Bx7fffadbb7d94
ninja: Entering directory build' ; cerror
[27/27]1 Linking CXX executable game Bx7fffadbbefeB <+28>: retq

(11do)]

Frill:35:18 PM

vim

+ building a C++ project w/ CMake + Ninja using entr to rebuild on file changes, LLDB bottom right

B tmux, ATDASERIHIMCAS IDE TFASE, Pokid—id.

2.3 EIEEEITERF

Sometimes, GUI applications will have an option to be sidelined to the system tray to run in the background.
The application is out of sight, but events and notifications can still come in, and the app can be instantly

brought to the foreground.
In tmux, a similar concept exists, where we can “detach” a tmux session.
Detaching can be especially useful on:

e Local machines. You start all your normal terminal applications within a tmux session, you restart
X. Instead of losing your processes as you normally would if you were using an X terminal, like xterm
or konsole, you’ d be able to tmux attach after and find all the processes inside that were alive and

kicking all along.

10 Chapter 2. tmux #JiR {#thinking-tmux}

tao-of-tmux Documentation, & %5 v1.0.2

e Remote SSH applications and workspaces you run in tmux. You can detach your tmux workspace at

work before you clock out, then the next morning, reattach your session. Ahhh. Refreshing. :)

e Those servers you rarely log into. Perhaps, a cloud instance you log into 9 months later, and as a
reflex, tmux attach to see if there is anything on there. And boom, you’ re back in a session you’ ve
forgotten about, but still jogs your memory to what you were tweaking or fixing. It’ s like a hack to

restore your memory.

2.4 Powerful combos

Chatting on irssi or weechat, one of the “classic combos” , along with a bitlbee server to manage AIM,
MSN, Google Talk, Jabber, ICQ, even Twitter. Then, you can detach your IRC and “idle” in your favorite

channels, stay online on instant messengers, and get back to your messages when you return.

[JOX) 1. ssh

Rules & more: https://ruby-community.com || Ruby 2.3.2; 2.2.6; 2.1.18: https://wwu.ruby-lang.org || Paste >3 lines of text on
1 37 #ruby rubylbotl
: without modifyi

#ruby

tually behind the “mtkd

__main__

inheritence chain
you
Making it an

t it means
A12

\umeric, Comparable, O c Kernel alfa
aalmenar

a s 1 of C od lookup
and A < B would
hi : t child of Numeric, which
incl Compare
yeah

so far on tr
a target module xbeforex
inject dule into that inher
irc freenode #iruby +Ccnt 1937 H: 2°17 1, 311 413

RN |

Chatting

on weechat w/ tmux

Some keep development services running in a session. Hearty emphasis on development, you probably will
want to daemonize and wrap your production web applications, using a tool like supervisor, with its own

safe environmental settings.

EZA P LI I [— 235, ATPAZE X 4 (pair programming) T QIRAESTIF[R]—4> session,
HoAth NB BT, MFERSA, MFEREGER window I pane,

The above are just examples; any general workspace you’ d normally use in a terminal could work, especially

2.4. Powerful combos 11

https://irssi.org/
https://weechat.org/
https://www.bitlbee.org
http://supervisord.org/

tao-of-tmux Documentation, K% v1.0.2

projects or repetitive efforts you multitask on. The tips and tricks section will dive into specific flows you

can use today.

Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>
Q>

[A tmux sessions ERAKERFL L B HBATH?

F4T. EE 4L XM tmux server F1 tmux L IFHBATHAMET.

Thankfully, the modern server can stay online for a long time. Even for
consumer laptops and PC's with a day or two uptime, having tmux persist
tasks for organizational purposes is satisfactory to run it.

It comes as a disappointment, because some are interested in being able to
persist a tree of processes after restart. It goes out of the scope of what

tmux is meant to do.

For tasks you repeat often, you can always use a tool, like

[tmuxp] (https://github.com/tony/tmuxp), [tmuxinator] (https://github.com/tmuxinator/tmuxinator),

or [teamocil] (https://github.com/remiprev/teamocil), to resume common

sessions.

Besides session managers, [tmux-resurrect] (https://github.com/tmux-plugins/tmux-resurrect)

attempts to preserve running programs, working directories, and
so on within tmux. The benefit with tmux-resurrect is there's no JSON/YAML

config needed.

2.5 IND

s S@XF A TEAFH)— N FEE T, B BT 5 A B TARS R R Z R 28, ROABCH
FIEH P RIS A KT . Besh, Elbfft T—Fikt TAEKR B GG, F86E T DAERT ISR (reattach).,

TR —/N, AT ML terminal PFYEAEAE, JE—DIRA tmux.

12

Chapter 2. tmux #JiR {#thinking-tmux}

CHAPTER 3

Terminal EFH%0iR (fundamentals) {#terminal-fundamentals}

TEREA] tmux , FATWE— T 6y QAT HRAER AR 05, FATEH G T RIEFRA TR LB AILA L
12, FATHRK—TABA T2 TR ZEMERA

ZI FEEWIT K E R Zsh, Bash, iTerm2, konsole, /dev/tty, shell scripting ZF LK . AR H tmux, 4R
PFAH X T HATRCIE, A2 GUI Fam, 620/ SSH ek 45 4%

WRARIEAMITAE R GE kernel 22 (BBS5H5555) ALFLHFER TTY H4I5 T A2 Marshall Kirk McKusick
B The Design and Implementation of the FreeBSD Operating System (2nd Edition), JuHZ Chapter 4,
Process Management and Section 8.6, Terminal Handling. F1 Linus Akesson Bf# The TTY demystified (1F

) WA TTY, XEELAFRIIRBE.

M Unix, 4.2 BSD SFf 5, AT AFREEZAH K, FATATATHE—8 K. FATAI ANZ A EEK
H, W c iIEFEEF KA Unix/BSD i 4, 8# & Linux, GNU %4, gt BUTRYIERY —FE; ARAT LA
ZAME PR B LR, AR YouTube AR %5 JF Marshall Kirk McKusick #F#) A Narrative History of
BSD., AT&T The UNIX Operating System. Stephen R. Bourne Early days of Uniz and design of she

3.1 POSIX #x#

PAE R G40 macOS () Operating systems like macOS (formerly OS X), Linux, and the BSDs, follow something
similar to the POSIX specification in terms of how they square away various responsibilities and interfaces

of the operating system. They’ re categorized as “Mostly POSIX-compliant” .

In daily life, we often break compatibility with POSIX standards for reasons of sheer practicality. Operating
systems, like macOS, will drop you right into Bash. make (1), a POSIX standard, is GNU Make on macOS
by default. Did you know, as of September 2016, POSIX Make has no conditionals?

13

http://amzn.to/2iTmVyv
http://www.linusakesson.net/programming/tty/index.php
https://www.youtube.com/watch?v=bVSXXeiFLgk
https://www.youtube.com/watch?v=bVSXXeiFLgk
https://www.youtube.com/watch?v=tc4ROCJYbm0
https://www.youtube.com/watch?v=FI_bZhV7wpI
https://en.wikipedia.org/wiki/POSIX#Mostly_POSIX-compliant
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
https://www.gnu.org/software/make/

tao-of-tmux Documentation, K% v1.0.2

I’ m not saying this to take a run at purists. As someone who tries to remain compatible in my scripting,
it gets hard to do simple things after a while. On FreeBSD, the default Make (PMake) uses dots between

conditionals:

IF

.ENDIF

But on most Linux systems and macOS, GNU Make is the default, so they get to do:

IF

ENDIF

This is one of the many tiny inconsistencies that span operating systems, their userlands, their binary /
library / include paths, and adherence / interpretation of the Filesystem Hierarchy Standard or whether

they follow their own.
Find your path

Most operating systems inspired by Unix (BSD’ s, macOS, Linux) will allow you to get the info

of your systems’ filesystem hierarchy via hier (7).

$ man hier

These differences add up. A good deal of software infrastructure out there exists solely to abstract the
differences across them. For example: CMake, Autotools, SFML, SDL2, interpreted programming languages,
and their standard libraries are dedicated to normalizing the banal differences across BSD-derivatives and
Linux distributions. Many, many #ifdef preprocessor directives in your C and C++ applications. You want
open source, you get choice, but be aware; there’ s a lot of upkeep cost in keeping these upstream projects

(and even your personal ones) compatible. But I digress, back to terminal stuff.

Why does it matter? Why bring it up? You’ 1l see this stuff everywhere. So, let’ s separate the usual

suspects into their respective categories.

3.2 Terminal interface

The terminal interface can be best introduced by citing official specification, laying out its technical proper-

ties, interfaces, and responsibilities. This can be viewed in its POSIX specification.

This includes TTYs, including text terminals and X sessions within them. On Linux / BSD systems, you

can switch between sessions via <ctrl-alt-F1> through <ctrl-alt-F12>.

14 Chapter 3. Terminal BEffif0iR (fundamentals) {#tterminal-fundamentals}

https://www.freebsd.org/doc/en_US.ISO8859-1/books/pmake/
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://www.freebsd.org/cgi/man.cgi?hier(7)
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html

tao-of-tmux Documentation, & %5 v1.0.2

3.3 Terminal emulators

GUI Terminals: Terminal.app, iterm, iterm2, konsole, Ixterm, xfce4-terminal, rxvt-unicode, xterm, roxterm,

gnome terminal, cmd.exe + bash.exe

3.4 Shell languages {#shell-languages}

Shell languages are programming languages. You may not compile the code into binaries with gcc or clang,

or have shiny npm package manager for them, but a language is a language.

Each shell interpreter has its own language features. Like with shells, many will resemble the POSIX shell
language and strive to be compatible with it. Zsh and Bash should be able to understand POSIX shell

scripts you write, but not the other way around (we will cover this in shell interpreters).

The first line of shell file is the shebang statement, which points to the interpreter to run the script in.
They normally use the .sh extension, but they can also be .zsh, .csh and so on if they’ re for a specific

interpreter.

Zsh scripts are implemented by the Zsh shell interpreter, Bash scripts by Bash. But the languages are
not as closely regulated and standardized as, say, C++’ s standards committee workgroups or python’ s
PEPs. Bash and Zsh take features from Korn and C Shell’ s languages, but without all the ceremony and

bureaucracy other languages espouse.

3.5 Shell interpreters (Shells) {#shells}

Examples: POSIX sh, Bash, Zsh, csh, tcsh, ksh, fish

Shell interpreters implement the shell language. They are a layer on top of the kernel and are what allow

you, interactively, to run commands and applications inside them.
As of October 2016, the latest POSIX specification covers in technical detail the responsibilities of the shell.

For shells and operating systems: each distro or group does their own darn thing. On most Linux distributions

and macOS, you’ Il typically be dropped into Bash.

On FreeBSD, you may default to a plain vanilla sh unless you specify otherwise during the installation
process. In Ubuntu, /bin/sh used to be bash (Bourne Again Shell) but was replaced with dash (Debian
Almquist Shell). So, here, you are thinking “hmm, /bin/sh, probably just a plain old POSIX shell”; however,
system startup scripts on Ubuntu used to allow non-POSIX scripting via Bash. This is because specialty shell
languages, such as Bash and Zsh, add helpful and practical features, but they’ re not portable. For instance,
you would need to install the Zsh interpreter across all your systems if you rely on Zsh-specialized scripting.
If you conformed with POSIX shell scripting, your scripting would have the highest level of compatibility at

the cost of being more verbose.

3.3. Terminal emulators 15

https://gcc.gnu.org/
http://clang.llvm.org/
https://www.npmjs.com/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_01
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_01
https://en.wikipedia.org/wiki/Shebang_(Unix)
http://www.open-std.org/jtc1/sc22/wg21/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sh.html
https://en.wikipedia.org/wiki/Bourne_shell
https://wiki.ubuntu.com/DashAsBinSh
https://en.wikipedia.org/wiki/Almquist_shell
https://en.wikipedia.org/wiki/Almquist_shell

tao-of-tmux Documentation, K% v1.0.2

Recent versions of macOS include Zsh by default. Linux distributions typically require you to install it via
package manager and install it to /usr/bin/zsh. BSD systems build it via the port system, pkg(8) on
FreeBSD, or pkg_add (1) on OpenBSD, and it will install to /usr/local/bin/zsh.

It’ s fun to experiment with different shells. On many systems, you can use chsh -s to update the default

shell for a user.

The other thing to mention is, for chsh -s to work, you typically need to have it added to /etc/shells.

3.6 /MNP

To wrap it up, you will hear people talking about shells all the time. Context is key. It could be:

e A generic way to refer to any terminal you have open. “Type $ top into your shell and see what

happens.” (Press ¢ to quit.)

o A server they have to log into. Before the era of the cloud, it would be popular for small hosts to sell

“C Shells” with root access.
e A shell within a tmux pane.

o If scripting is mentioned, it is likely either the script file, an issue related to the scripts’ behavior, or

something about the shell language.

But overall, after this overview, go back to doing what you’ re doing. If shell is what people say and they
understand it, use it. The backing you have here should make you more confident in yourself. These days,

it’ s an ongoing battle catching our street smarts up with book smarts.

In the next chapter, we will touch some terminal basics before diving deeper into tmux.

16 Chapter 3. Terminal BEffif0iR (fundamentals) {#tterminal-fundamentals}

https://www.freebsd.org/cgi/man.cgi?query=pkg&apropos=0&sektion=0&manpath=FreeBSD+10.3-RELEASE+and+Ports&arch=default&format=html
http://man.openbsd.org/pkg_add.1
https://en.wikipedia.org/wiki/Chsh
https://bash.cyberciti.biz/guide//etc/shells

CHAPTER 4

FFaa{ER (Practical usage) {#practical-usage}

SR EFRATIF AR FTHF terminal %A tmux %[G4 enter.

$ tmux

FGAFEA tmux (5

4.1 gEAERIER (prefix key) {#prefix-key}

SISO BRI v S 4. RATTATRAE 1 (windows), BB, VIHEID, Gl
S (sessions), s FI5E X%

B A T2 5E 11 TR o

XA RBITERHHE (Street Fighter)

FERH, DA — G, EHA O BNt k. IR, R By, i
SRR EREEE, KIRIALAILIZ.

ARTE AR tmux, IRSIEAEKFHI

R A A Vim, Emacs 5 HAh (Terminal User Interface, TUI) K TR . Q05 M AR A - HIAK
SN, BRI RIS . AR TUL / GUT W AR 24 A i 2 S R A B T VR B .
ARG, MWK TR RAERAREAE . SHAERhCIZ b, BTG, Bl H R
I

17

https://en.wikipedia.org/wiki/Street_Fighter

tao-of-tmux Documentation, K% v1.0.2

4.1.1 L\gi{#EMAiT GNU Screen?

W tmux BB SR E tmux B prefix key o FECH ~/.tmux.conf X E prefix :

set-option -g prefix C-a

T4 prefix $E N screen(1) (H— ik TH) Y prefix key .

BRIAF leader prefix &£ <Ctrl-b>. 4$%fF control HYMME, R b,

4.1.2 k% tmux HLHESHE

e
1. #%F control fit:
2. FHET b HELRF
3. (AR
LK. ZHULIRIRES 5153 B AR T KT TRFE S
BT, N
<Ctrl-b> d 41&
1. #F control ffpts
2. #F b GRS
3. [FIPRE O
AT a B
PRIGTRNJ 3 T 6 e B85 —RAL G i<, BIRBEE T tmux.
YREZWIHFAI tmux session . T $ tmux attach FRRIERE L.

>~

4.1.3 Nested tmux sessions

You can also send the prefix key to nested tmux sessions. For instance, if you’ re inside a tmux client on
a local machine and you SSH into a remote machine in one of your panes, on the remote machine, you can
attach the client via tmux attach as you normally would. To send the prefix key to the machine’ s tmux

client, not your local one, hit the prefix key again.

So, if your prefix key is the default, <Ctrl-b>, do <Ctrl-b> + b again, then hit the shortcut for what you

want to do.

Example: If you wanted to create a window on the remote machine, which would normally be <Ctrl-b> +
c locally, it” d be <Ctrl-b> + b + c.

Hereinafter, the book will refer to shortcuts by Prefix. Instead of <Ctrl-b> + d, you will see Prefix + d.

18 Chapter 4. FFia{EFR (Practical usage) {#practical-usage}

tao-of-tmux Documentation, & %5 v1.0.2

4.2 Session persistence and the server model

If you use Linux or a similar system, you’ ve likely brushed through Job Control, such as £g(1), jobs(1).
tmux behavior feels similar, like you ran <Ctrl-z> except, technically, you were in a “job” all along. You

were just using a client to view it.

Another way of understanding it: <Ctrl-b> + d closed the client connection, therefore, ‘detached’ from

the session.

Your tmux client disconnected from the server instance. The session, however, is still running in the back-

ground.

4.3 It’ s all commands

Multiple roads can lead you to the same behavior. Commands are what tmux uses to define instructions for

setting options, resizing, renaming, traversing, switching modes, copying and pasting, and so forth.
e Configs are the same as automatically running commands via $ tmux command.
e Internal tmux commands via Prefix + : prompt.

e Settings defined in your configuration can also set shortcuts, which can execute commands via key-

bindings via bind-key.
e Commands called from CLI via $ tmux cmd

e To pull it all together, source code files are prefixed cmd-.

4.4 IND

We’ ve established tmux automatically creates a server upon starting it. The server allows you to detach
and later reattach your work. The keyboard sequences you send to tmux require understanding how to send

the prefix key.

Keyboard sequences, configuration, and command line actions all boil down to the same core commands

inside tmux. In our next chapter, we will cover the server.

4.2. Session persistence and the server model 19

https://en.wikipedia.org/wiki/Job_control_(Unix)
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/fg.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/jobs.html

tao-of-tmux Documentation, K% v1.0.2

20 Chapter 4. FFia{EFR (Practical usage) {#practical-usage}

CHAPTER b

RR% (Server) {#server}

R% 2SI AT sessions . windows . panes .

FE tmux, J@T socket HLHIERE—A tmux kS5 (server), SRR HHHSLE tmux B client % . 4~
FFRATRFENJF XA server 52, W HFRT AT PA—IR KR H 2 2504 .

21

tao-of-tmux Documentation, &% v1.0.2

server
session

session

bane ‘pane
window.

pane pane

bane ‘pane
—window.

pane pane

ﬁane pane
—window.

pane pane

pane pane

window.

pane pane

pane pane

window.

pane pane

pane pane

window.

pane pane

‘pane pane
window.

pane pane

‘pane pane
window.

pane pane

‘ pane pane
window.

pane pane

session

bane ‘ pane
—window.
pane pane

bane ‘ pane
—window.
pane pane

bane ‘ pane
—window.
pane pane

bane pane
—window.
pane pane

bane pane
—window.
pane pane

bane pane
window.

pane pane

‘ pane péne
—window.
pane pane

‘ pane bane
—window,
pane pane

‘ pane pane
—window,
pane pane

5.1 What? tmux is a server?

pane ‘pa‘r‘1e
window

pane pane

pane ‘par‘1e
window

pane pane

pane ‘pa;1e
window

pane pane

pane ‘pa‘ne
window

pane pane

par;e ‘pa‘ne
window

pane pane

par;e ‘pa‘n‘e
window.

pane pane

par‘e ‘pan‘e
window.
pane pane
par‘1‘e ‘pan‘e
window.
pane pane
par¥e ‘pan‘e
window.

pane pane

session

péne ‘pa‘ﬁe
‘window.
pane pane

pane ‘pa‘r‘1e
window.
pane pane

pane ‘pa‘r‘1e
window.
pane pane

pane ‘pa‘ne
window
pane pane

pane ‘pa‘ne
‘window
pane pane

pane ‘pa‘ne
window.
pane pane

paHe
win
pane pane

par‘e ‘pa‘ne
window
pane pane

par;e ‘pa‘ne
window
pane pane

Often, when “server” is mentioned, what comes to mind for many may be rackmounted hardware; to others,
it may be software running daemonized on a server and managed through a utility, like upstart, supervisor,

and so on.

Unlike web or database software, tmux doesn’ t require specialized configuration settings or creating a service

entry to start things.

tmux uses a client-server model, but the server is forked to the background for you.

5.2 Zero config needed

You don’ t notice it, but when you use tmux normally, a server is launched and being connected via a client.

22 Chapter 5. PBR% (Server) {#server}

tao-of-tmux Documentation, & %5 v1.0.2

tmux is so streamlined, the book could continue to explain usage and not even mention servers. But, I’
d rather you have a true understanding of how it works on systems. The implementation feels like magic,
while living up to the unix expectations of utilitarianism. One cannot deny it’ s exquisitely executed from

a user experience standpoint.

How is it utilitarian? We’ 1l go into it more in future chapters, where we dive into Formats, Targets, and

tools, such as libtmux I made, which utilize these features.

It surprises some, because servers often beget a setup process. But servers being involved doesn’ t entail

hours of configuration on each machine you run on. There’ s no setup.

When people think server, they think pain. It invokes an image of digging around /etc/ for configuration
files and flipping settings on and off just to get basic systems online. But not with tmux. It’ s a server, but

in the good way.

5.3 Stayin’ alive

The server part of tmux is how your sessions can stay alive, even after your client is detached.

You can detach a tmux session from an SSH server and reconnect later. You can detach a tmux session, stop

your X server in Linux/BSD, and reattach your tmux session in a TTY or new X server.

The tmux server won’ t go away until all sessions are closed.

5.4 Servers 14 sessions

—~ server f1 & —AB{ 2> sessions.

Starting tmux after a server already is running will create a new session inside the existing server.

W> ### Advanced: Multiple servers

w>

W> tmux is nimble. To use a separate server, pass in the "-L° flag to any
W> command.

w>

W> “tmux -L moo”™ - connect to server under socket name "moo" and attach
W> a new session. Create server if none already exists for socket.

w>

W> “tmux -L moo attach”™ will attempt to re-attach a session if one exists.

5.3. Stayin’ alive 23

https://github.com/tony/libtmux

tao-of-tmux Documentation, K% v1.0.2

5.5 How servers are ‘“named”

The default name for the server is default, which is stored as a socket in /tmp. The default directory for

storing this can be overridden via setting the TMUX_TMPDIR environment variable.

So, something like:

$ export TMUX_TMPDIR=$HOME

$ tmux

Will give you a tmux directory created within your $HOME folder. On OS X, your home folder will probably
be something like /Users/yourusername. On other systems, it may be /home/yourusername. If you want

to find out, type $ echo $HOME.

5.6 Clients

Servers will have clients (you) connecting to them.
When you connect to a session and see windows and panes, it” s a client connection into tmux.

You can retrieve a list of active client connections via:

$ tmux list-clients

These commands and the other 1ist- commands, in practice, are rare. But, they are part of tmux script-

ability should you want to get creative. The scripting tmux chapter will cover this in greater detail.

5.7 Clipboard {#clipboard}

tmux clients 15— 2L clipboard 144, FE essions, windows, fll panes #G .

Much like vi, tmux handles copying as a mode in which a pane is temporarily placed. When inside this

mode, text can be selected and copied to the paste buffer, tmux’ s clipboard.
The default key to enter copy mode is Prefix + [.
1. From within, use [space] to enter copy mode.
2. Use the arrow keys to adjust the text to be selected.
3. Press [enter] to copy the selected text.
The default key to paste the text copied is Prefix +].
Vi-like copy-paste

In your config, put this:

24 Chapter 5. PBR% (Server) {#server}

tao-of-tmux Documentation, & %5 v1.0.2

Vi copypaste mode
set-window-option -g mode-keys vi

bind-key -t vi-copy 'v' begin-selection

bind-key -t vi-copy 'y' copy-selection

In addition to the “copy mode” , tmux has advanced functionality to programmatically copy and paste.
Later in the book, the Capturing pane content section in the Scripting tmux chapter goes into $ tmux
capture-pane and how you can use targets to copy pane content into your paste buffer or files with $ tmux

save-buffer.

5.8 IMND

The server is one of the fundamental underpinnings of tmux. Initialized automatically to the user, it persists
by forking into the background. Running behind the scenes, it ensures sessions, windows, panes, and buffers

are operating, even when the client is detached.

The server can hold one or more sessions. You can copy and paste between sessions via the clipboard. In
the next chapter, we will go deeper into the role sessions play and how they help you organize and control

your terminal workspace.

5.8. IZMND 25

tao-of-tmux Documentation, K% v1.0.2

26 Chapter 5. PBR% (Server) {#server}

CHAPTER 0

218 (Sessions) {#sessions}

Welcome to the session, the highest-level entity residing in the server instance. Server instances are forked to
the background upon starting a fresh instance and reconnected to when reattaching sessions. Your interaction

with tmux will have at least one session running.

—NETEAEZ AN 1 windows,

27

tao-of-tmux Documentation, &% v1.0.2

session

command > command

pane pane

window

command > command

pane pane

command > command

pane pane

window

command > command

pane pane

command > command

pane pane

window

command > command

pane pane

WG B LA —A> * FERR%E tab o

command > command command > command

pane pane pane pane

window window.

command > command command > command

pane pane pane pane

command > command command > command

pane pane pane pane

window window.

command > command command > command

pane pane pane pane

command > command command > command

pane pane pane pane

window window.

command > command command > command

pane pane pane pane

28

Chapter 6. &iE (Sessions) {#sessions}

tao-of-tmux Documentation, & %5 v1.0.2

[] [] 2. me: tmux att (zsh)

status b

e + Ninja using entr rebuild on fi

¢ things at once on the same s
the i

11 run a ai a or.log” in a
of the latest system

[unix/MARKDOWN] [/Users./me/work/tao-of-tmux/manuscript]48,o-1 31% <d [+] [unix/MARKDOWN] [/Users/me/work/tao-of-tmux/manuscript]14,107

Mon1@:54:32 AM

first window, ID 1, titled "manuscript” is active. The second window, ID 2, titled zsh.

6.1 GIELIE (sessions)

s (] LAY B TR T YO EA%TT tmux

The

$ tmux

$ tmux NHSEEEMT $ tmux new-session Ao .

BRATEUL T, session #4527, A4tk Fiayar& B2

$ tmux new-session -s'my rails project'

6.2 tmux Y)IREIE (sessions)

Some acquire the habit of detaching their tmux client and reattaching via tmux att -t session_name.

Thankfully, you can switch sessions from within tmux!
Prefix + s will allow you to switch between sessions within the same tmux client.

This command name can be confusing. switch-client will allow you to traverse between sessions in the

Server.

Example usage:

6.1. GIELIE (sessions) 29

tao-of-tmux Documentation, &% v1.0.2

$ tmux switch-client -t dev

If already inside a client, this will switch to a session, named “dev” | if it exists.

Pa A
6.3 ERHEAEE
Sometimes, the default session name given by tmux isn’ t descriptive enough. It only takes a few seconds

to update it.

You can name it whatever you want. Typically, if I’ m working on multiple web projects in one session,

I’ 1l name it “web” . If I’ m assigning one software project to a single session, I’ 1l name it after the

software project. You’ 1l likely develop your own naming conventions, but anything is more descriptive than
the default.

Renaming

a session '0’ to 'react web’

If you don’ t name your sessions, it’ 1l be difficult to keep track of what the session contains. Sometimes,
you may forget you have a project opened, especially if your machine has been running for a few days, weeks,

or months. You can save time by reattaching your session and avoid creating a duplicate.

You can rename sessions from within tmux with Prefix + . The status bar will be temporarily altered into

a text field to allow altering the session name.

Through command line, you can try:

$ tmux rename-session -t 1 "my session"

30 Chapter 6. &iE (Sessions) {#sessions}

tao-of-tmux Documentation, & %5 v1.0.2

6.4 EXRFEMRIE

If you’ re scripting tmux, you will want to see if a session exists. has-session will return a 0 exit code if

the session exists, but will report a 1 exit code and print an error if a session does not exist.

$ tmux has-session -t 1

It assumes the session “1” exists; it’ 1l just return 0 with no output.

But if it doesn’ t, you’ 1l get something like this in a response:

$ tmux has-session -t 1

> can't find session 1

To try it in a shell script:

if tmux has-session -t O ; then

echo "has session 0"

6.5 /MNP

In this chapter, you learned how to rename sessions for organizational purposes and how to switch between

them quickly.

You’ 1l always be attached to a session when you’ re using a client in tmux. When the last remaining session

is closed, the server will close also.

Think of sessions as workspaces designed to help organize a set of windows, analogous to virtual desktop

spaces in GUI computing.

In the next chapter, we will go into windows, which, like sessions, are also nameable and let you switch

between them.

6.4. ERFAMRIE 31

https://en.wikipedia.org/wiki/Exit_status
https://en.wikipedia.org/wiki/Virtual_desktop

tao-of-tmux Documentation, K% v1.0.2

32 Chapter 6. £1iF (Sessions) {#sessions}

CHAPTER [

B0 (Windows) {#windows}

Windows 2 panes. windows X AL EFE session 1,
p

They also have layouts, which can be one of many preset dimensions or a custom one done through pane

zzzzzzz g.

> command > command

pane pane

> command > command

pane pane

33

tao-of-tmux Documentation, &% v1.0.2

You can see the current windows through the status bar at the bottom of tmux.

7.1 Creating windows

All sessions start with at least one window open. From there, you can create and kill windows as you see fit.

Window indexes are numbers tmux uses to determine ordering. The first window’ s index is 0, unless you set
it via base-index in your configuration. I usually set -g base-index 1 in my tmux configuration, since 0

is after 9 on the keyboard.

Prefix + c will create a new window at the first open index. So, if you’ re in the first window, and there
is no second window created, it will create the second window. If the second window is already taken, and

the third hasn’ t been created, it will create the third window.

If the base_index is 1 and there are 7 windows created, with the 5th window missing, creating a new window
will fill the empty 5th index, since it’ s the next one in order and nothing is filling it. The next created

window would be the eighth.

7.2 Naming windows

Just like with sessions, windows can have names. Labelling them helps keep track of what you’ re doing

inside them.

a window ’zsh’ to 'renamed’

When inside tmux, the shortcut Prefix 4 , is most commonly used. It opens a prompt in the tmux status

line, where you can alter the name of the current window.

The default numbers given to windows also become muscle memory after a while. But naming helps you
when you’ re in a new tmux flow and want to organize yourself. Also, if you’ re sharing tmux with another

user, it’ s good practice to give a hint what’ s inside the windows.

34 Chapter 7. & DO (Windows) {#windows}

tao-of-tmux Documentation, & %5 v1.0.2

7.3 Traversing windows

Moving around windows is done in two ways, first, by iterating through via Prefix + p and Prefix + n

and via the window index, which takes you directly to a specific window.

Prefix + 1, Prefix + 2, and so on---allows quickly navigating to windows via their index. Unlike window

names, which change, indexes are consistent and only require a quick key combo for you to invoke.

Prompt for a window index (useful for indexes greater than 9) with Prefix + '. If the window index is 10

or above, this will help you a lot.

7.3.1 Tip: Search + Traverse Windows for Text

You can forward to a window with a match of a text string by doing Prefix + f.
Bring up the last selected window with Prefix + 1.

A list of current windows can be displayed with Prefix + w. This also gives some info on what’ s inside

the window. Helpful when juggling a lot of things!

7.4 Moving windows

Windows can also be reordered one by one via move-window and its associated shortcut. This is helpful if
a window is worth keeping open but not important or rarely looked at. After you move a window, you can

continue to reorder them at any point in time after.

The command $ tmux move-window can be used to move windows.

The accepted arguments are -s (the window you are moving) and -t, where you are moving the window to.
You can also use $ tmux movew for short.

Example: move the current window to number 2:

$ tmux movew -t2

Example: move window 2 to window 1:

$ tmux movew -s2 -t1

The shortcut to prompt for an index to move the current window to is Prefix + ..

7.3. Traversing windows 35

tao-of-tmux Documentation, &% v1.0.2

7.5 Layouts {#window-layouts}

Prefix + space switches window layouts. These are preset configurations automatically adjusting propor-

tions of panes.

As of tmux 2.3, the supported layouts are:

“even-horizontal” layout

2 panes 3 panes 4 panes

{width=75%}

“even-vertical” layout

2 panes 3 panes 4 panes

{width=75%}

36 Chapter 7. & DO (Windows) {#windows}

tao-of-tmux Documentation, & %5 v1.0.2

“main-horizontal” layout

2 panes 3 panes 4 panes

{width=75%}

“main-vertical” layout

2 panes 3 panes 4 panes
{width=75%}

“tiled” layout

2 panes 3 panes 4 panes

{width=75%}

7.5. Layouts {#window-layouts} 37

tao-of-tmux Documentation, K% v1.0.2

Specific touch-ups can be done via resizing panes.

To reset the proportions of the layout (such as after splitting or resizing panes), you have to run $ tmux

select-layout again for the layout.

This is different behavior than some tiling window managers. awesome and zmonad, for instance, automat-

ically handle proportions upon new items being added to their layouts.

To allow easy resetting to a sensible layout across machines and terminal dimensions, you can try this in

your config:

bind m set-window-option main-pane-height 60\; select-layout main-horizontal

This allows you to set a main-horizontal layout and automatically set the bottom panes proportionally on

the bottom every time you do Prefix + m.

Layouts can also be custom. To get the custom layout snippet for your current window, try this:

$ tmux lsw -F "#{window_active} #{window_layout}" | grep ""1" | cut -d " " -£f2

To apply this layout:

$ tmux 1lsw -F "#{window_active} #{window_layoutl}" | grep "~1" | cut -d " " -f2
> baed,176x79,0,0[176x59,0,0,0,176x19,0,60{87x19,0,60,1,88x19,88,60,2}]

resize your panes or try doing this in another window to see the outcome

$ tmux select-layout "baed,176x79,0,0[176x59,0,0,0,176x19,0,60{87x19,0,60,1,88x19,88,60,2}]"

7.6 Closing windows

There are two ways to kill a window. First, exit or kill every pane in the window. Panes can be killed via
Prefix + x or by Ctrl + d within the pane’ s shell. The second way, Prefix + &, prompts if you really
want to delete the window. Warning: this will destroy all the window’ s panes, along with the processes

within them.

From inside the current window, try this:

$ tmux kill-window

Another thing, when scripting or trying to kill the window from outside, use a target of the window index:

$ tmux kill-window -t2

If you’ re trying to find the target of the window to kill, they reside in the number in the middle section of
the status line and via $ tmux choose-window. You can hit “return” after you’ re in choose-window to

go back to where you were previously.

38 Chapter 7. & DO (Windows) {#windows}

https://en.wikipedia.org/wiki/Tiling_window_manager
https://awesomewm.org/
http://xmonad.org/

tao-of-tmux Documentation, & %5 v1.0.2

7.7 Summary

In this chapter, you learned how to manipulate windows via renaming and changing their layouts, a couple
of ways to kill windows in a pinch or in when shell scripting tmux. In addition, this chapter demonstrated

how to save any tmux layout by printing the window_layout template variable.

If you are in a tmux session, you’ Il always have at least one window open, and you’ 1l be in it. And within
the window will be “pane” ; a shell within a shell. When a window closes all of its panes, the window closes

too. In the next chapter, we’ 1l go deeper into panes.

7.7. Summary 39

tao-of-tmux Documentation, K% v1.0.2

40 Chapter 7. & DO (Windows) {#windows}

CHAPTER 8

HE4R (Panes) {#panes}

Panes are pseudoterminals encapsulating shells (e.g., Bash, Zsh). They reside within a window. A terminal
within a terminal, they can run shell commands, scripts, and programs, like vim, emacs, top, htop, irssi,

weechat, and so on within them.

> command

pane

41

https://en.wikipedia.org/wiki/Pseudoterminal

tao-of-tmux Documentation, K% v1.0.2

8.1 GIEMEHR

To create a new pane, you can split-window from within the current window and pane you are in.

You can continue to create panes until you’ ve reached the limit of what the terminal can fit. This depends

on the dimensions of your terminal. A normal window will usually have 1 to 5 panes open.

Example usage:

Create pane horizontally, $HOME directory, 507 width of current pane
$ tmux split-window -h -c $HOME -p 50 vim

I[|(images/07-pane/splitw/-h -¢ SHOME -p 50 vim - 2 panes.png)

create new pane, split vertically with 75/ height
tmux split-window -p 75

I[|(images/07-pane/splitw/-p 75.png)

8.2 miREIYH (Traversing Panes) {#pane-traversal}

Moving around vimtuitively

If you like vim (hjkl) keybindings, add these to your config:

hjkl pane traversal
bind h select-pane -L
bind j select-pane -D
bind k select-pane -U
bind 1 select-pane -R

8.3 mHRE\E/Mt (Zoom in) {#zoom-pane}

To zoom in on a pane, navigate to it and do Prefix + z.

You can unzoom by pressing Prefix + z again.

In addition, you can unzoom and move to an adjacent pane at the same time using a pane traversal key.

Behind the scenes, the keybinding is a shortcut for $§ tmux resize-pane -Z. So, if you ever wanted to script

tmux to zoom/unzoom a pane or apply this functionality to a custom key binding, you can do that too, for

instance:

bind-key -T prefix y resize-pane -Z

42 Chapter 8. T# (Panes) {#panes}

tao-of-tmux Documentation, & %5 v1.0.2

This would have Prefix 4+ y zoom and unzoom panes.

8.4 WHRXK/N (Resizing panes) {#resizing-panes}

Pane size can be adjusted within windows via window layouts and resize-pane. Adjusting window layout
switches the proportions and order of the panes. Resizing the panes targets a specific pane inside the window
containing it, also shrinking or growing the size of the other columns or rows. It’ s like adjusting your car

seat or reclining on a flight; if you take up more space, something else will have less space.

8.5 Outputting pane to a file

You can output the display of a pane to a file.

$ tmux pipe-pane -o 'cat >>~/output.#I-#P'

The #I and #P are formats for window index and pane index, so the file created is unique. Clever!

8.6 /MNP

Panes are shells within a shell. You can keep adding panes to a tmux window until you run out of room
on your screen. Within your shell, you can tail -F log files, write and run scripts, and run curses-powered

applications, like vim, top, htop, ncmpcpp, irssi, weechat, mutt, and so on.

You will always have at least one pane open. Once you kill the last pane in the window, the window will
close. Panes are also resizable; you can resize panes by targeting them specifically and changing the window

layout.

In the next chapter, we will go into the ways you can customize your tmux shortcuts, status line, and

behavior.

8.4. EHRXK/M (Resizing panes) {#resizing-panes} 43

https://en.wikipedia.org/wiki/Curses_(programming_library)

tao-of-tmux Documentation, K% v1.0.2

44 Chapter 8. T# (Panes) {#panes}

CHAPTER 9

BiE (Configuration) {#config}

Most tmux users break away from the defaults by creating their own customized configurations. These
configurations vary from the trivial, such as adding keybindings, and adjusting the prefix key, to complex

things, such as decking out the status bar with system stats and fancy glyphs via powerlines.

Configuration of tmux is managed through .tmux.conf in your $HOME directory. The paths ~/.tmux.conf
and $HOME/ . tmux.conf should work on OS X, Linux, and BSD.

Configuration is applied upon initially starting tmux. The contents of the configuration are tmux commands.

The file can be reloaded later via source-file, which is discussed in this chapter.

For a sample config, I maintain a pretty decked out one at https://github.com/tony/tmux-config. It’ s

permissively licensed, and you’ re free to copy and paste from it as you wish.
Custom Configs

You can specify your config via the -f command. Like this:

$ tmux -f path/to/config.conf

Note: If a tmux server is running in the background and you want to test a fresh config, you

must either shut down the rest of the tmux sessions or use a different socket name. Like this:

$ tmux -f path/to/config.conf -Ltesting_tmux

And you can treat everything like normal; just keep passing -Ltesting_tmux (or whatever socket

name you feel like testing configs with) for reuse.

45

https://github.com/tony/tmux-config

tao-of-tmux Documentation, K% v1.0.2

$ tmux -Ltesting_tmux attach

9.1 EFHBCENLH {#reload-config}

You can apply config files in live tmux sessions. Compare this to source or “dot” in the POSIX standard.
Prefix + : will open the tmux prompt, then type:
:source /path/to/config.conf
And hit return.
$ tmux source-file /path/to/config.conf can also achieve the same result via command line.
AT (5 2

Even better, often, you will keep your default tmux config stored in $HOME/.tmux.conf. So,

what can you do? You can bind-key to source-file ~/.tmux.conf:
bind r source ~/.tmux.conf

You can also have it give you a confirmation afterwards:

bind r source ~/.tmux.conf\; display "~/.tmux.conf sourced!"
Now, you can type Prefix + r to get the config to reload.

Note that reloading the configuration only re-runs the configuration file. It will not reset keybindings or

styling you apply to tmux.

9.2 EeE R T{ERIE

The tmux configuration is processed just like run commands in a ~/.zshrc or ~/.bashrc file. bind r

source ~/.tmux.conf in the tmux configuration is the same as $ tmux bind r source ~/.tmux.conf.

You could always create a shell script prefixing tmux in front of commands and run it on fresh servers. The
result is the same. Same goes if you manually type in $§ tmux set-option and $ tmux bind-key commands

into any terminal (in or outside tmux).

This in .tmux.conf:

bind-key a send-prefix

Is the same as having no .tmux.conf (or $ tmux -f/dev/null) and typing:

$ tmux bind-key a send-prefix

46 Chapter 9. EZE (Configuration) {#config}

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#dot
https://en.wikipedia.org/wiki/Run_commands

tao-of-tmux Documentation, & %5 v1.0.2

in a newly started tmux server.

The important thing to internalize is that a tmux configuration consists of setting server options (set-option

-s), global session (set-option -g), and window options (set-window-option -g).

The rest of this chapter is going to proceed cookbook-style. You can pick out these tweaks and add them to

your .tmux.conf and reload.
9.3 fRFZ1ZE (Server options)
Server options are set with set-option -s option value.

9.3.1 Tweak timing between key sequences

set -s escape-time 0O

9.3.2 Terminal coloring

If you’ re having an issue with color detail in tmux, it may help to set default-terminal to

screen-256color.

set -g default-terminal "screen-256color"

This sets the TERM variable in new panes.

9.4 &iEiXE (Session options)

Aside from the status bar, covered in the next chapter, most user configuration will be custom keybindings.

This section covers the few generic options, and the next section goes into snippets involving keybindings.

9.4.1 HOit%Y (Base index)

This was mentioned earlier in the book, but it’ s a favorite tweak of many tmux users, who find it more
intuitive to start their window counting at 1, rather than the default, 0. To set the starting number (base

index) for windows:

set -g base-index 1

Setting base-index assures newly created windows start at 1 and count upwards.

9.3. PR%%&E (Server options) 47

tao-of-tmux Documentation, K% v1.0.2

9.5 BHOiXE (Window options)

Window options are set via set-option -w or set-window-option. They are the same thing.

9.5.1 Automatic window naming

Setting automatic-rename alters the name of the window based upon its active pane:

set-window-option -g automatic-rename

Automatic renaming will be disabled for the window if you rename it manually.

9.6 'RIFEERGIE (Keybindings)

9.6.1 Prefix key

The default prefiz key in tmux is <Ctrl-b>. You can customize it by setting a new prefix and unsetting the
default. To set the prefix to <Ctrl-a>, like GNU Screen, try this:

set-option -g prefix C-a
unbind-key C-b

bind-key a send-prefix

9.6.2 New window with prompt

Prompt for window name upon creating a new window, Prefix + C (capital C):

bind-key C command-prompt -p "Name of new window: " "new-window -n '//'"

9.6.3 Vi copy-paste keys

This is comprised of two-parts: Setting the mode-keys window option to vi and setting the vi-copy bindings

to use v to begin selection and y to yank.

Vi copypaste mode
set-window-option -g mode-keys vi
bind-key -t vi-copy 'v' begin-selection

bind-key -t vi-copy 'y' copy-selection

48 Chapter 9. EZE (Configuration) {#config}

tao-of-tmux Documentation, & %5 v1.0.2

9.6.4 hjkl / vi-like pane traversal

Another one for vi fans, this keeps your right hand on the home row when moving directionally across panes

in a window.

bind h select-pane -L
bind j select-pane -D
bind k select-pane -U
bind 1 select-pane -R

9.6.5 Further inspiration

For more ideas, I have a .tmux.conf you can copy-paste from on the internet at https://github.com/tony/

tmux-config/blob/master/.tmux.conf.

In the next chapter, we will go into configuring the status line.

9.6. 'RIFEHESIFE (Keybindings) 49

https://github.com/tony/tmux-config/blob/master/.tmux.conf
https://github.com/tony/tmux-config/blob/master/.tmux.conf

tao-of-tmux Documentation, K% v1.0.2

50 Chapter 9. EZE (Configuration) {#config}

cHAPTER 10

ARZS#= (Status bar) FIME{LIZE {#status-bar}

e tmux FERY N EBALCERARGSAES, ATAR T MR . B =B L. A ATTER AT DA E Lo IR
IFN—RINE LT T

status-left window list status-right

| | | | [|

Tuell:41:07 PM

LEHWPIRE status-left il status-right A]PASEKE, i#id configurable U4 .tmux.conf, HiFAHH
AT 2 $ tmux set-option.

RrRIEMRERIEE

$ tmux show-options -g | grep status

10.1 B ORAEIERIR

IR B 14 P AN, AR 144 7 Bl — SR AR I A5 B o BB ThI P A% -

INEETS . —ANTHIAR (pane) B DAgEE/IME pane zoomed 13T Prefix + z, F§4##—IK Prefix + z B{E A
MR ek, WA .

10.2 HHAF0ATE]

status-left il status-right #P/n] LA E H .

51

tao-of-tmux Documentation, K% v1.0.2

This happens via piping the status templates through format_expand_time in format.c, which routes right

into strftime(3) from time.h.

A full list of variables can be found in the documentation for strftime(3). This can be viewed through $

man strftime on Unix-like systems.

10.3 Shell command output

You can also call applications, such as tmux-mem-cpu-load, conky, and powerline.

For this example, we’ 1l use tmux-mem-cpu-load. This works on Unix-like systems like FreeBSD, Linux

distributions, and macOS.

To build from source, you must have CMake and git, which are available through your package manager.
You must have a C++ compiler. On macOS, install Xcode CLI Utilities. You can do this by going to
Applications -> Utilities, launching Terminal.app and typing $ xcode-select --install. macOS can use

Homebrew to install the CMake and git package. Major Linux distributions package CMake, clang, and git.

Before this step, you can cd into any directory you’ re ok keeping code in.

git clone https://github.com/thewtex/tmux-mem-cpu-load.git
cd tmux-mem-cpu-load

mkdir ./build

cd ./build

cmake ..

®B hH B PN L P

make

W

macOS, mo sudo rTequired

make install

Linuz, BSD will require sudo / root to install

sudo make install

If successful, you should see the output below:

[100%] Built target tmux-mem-cpu-load
Install the project...
-- Install configuration: "MinSizeRel"

-- Installing: /usr/local/bin/tmux-mem-cpu-load

You can remove the source code you cloned from the computer. The compiled application is installed.

You can now add #(tmux-mem-cpu-load) to your status-left or status-right option. In the “Dressed

up” example below, I use status-left and also theme it to be green:

#[fg=green,bg=default,bright]#(tmux-mem-cpu-load)

52 Chapter 10. K74 (Status bar) FaPME(LIRE {#status-bar}

https://github.com/tmux/tmux/blob/2.3/format.c#L868
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strftime.html
https://github.com/thewtex/tmux-mem-cpu-load
https://github.com/brndnmtthws/conky
https://cmake.org
https://brew.sh/

tao-of-tmux Documentation, & %5 v1.0.2

So to apply it to your theme, you need to double check what you already have. You may have information

on there you want to keep.

$ tmux show-option -g status-right

status-right " "#{=21:pane_title}" JH:/M Jd-}b-}y"

Copy what you had in response (or change, rearrange as you see fit) then add the #(tmux-mem-cpu-load)
to it. You can apply the new status line in your current tmux session via $ tmux set-option -g

status-right:

$ tmux set-option -g status-right '"#{=21:pane_title}" #(tmux-mem-cpu-load) %H:%M %d-%b-%y'

Also, note how I switched out the double quotes on either side of the option with single quotes. This is

required, since there are double quotes inside.

You can do this with anything, for instance, try adding uptime. This could be done by adding #(uptime)
to your status line. Typically the output is pretty long, so trim it down by doing something like this:

#(uptime | cut -f 4-5 -4 " " | cut -f 1 -4 ",")

In the next section, we go into how you can style (color) tmux.

10.4 Styling

The colors available to tmux are:
e black, red, green, yellow, blue, magenta, cyan, white.

e bright colors, such as brightred, brightgreen, brightyellow, brightblue, brightmagenta,
brightcyan.

e colour0 through colour255 from the 256-color set.
e default

e hexadecimal RGB code like #000000, #FFFFFF, similar to HTML colors.

10.4.1 Status line

You can use [bg=color] and [fg=color] to adjust the text color and background within for status line

text. This works on status-left and status-right.

Let’ s say you want to style the background:

Command: $ tmux set-option status-style fg=white,bg=black
In config: status-style fg=white,bg=black

In the examples at the end of the chapter, you will see complete examples of how colors can be used.

10.4. Styling 53

https://linux.die.net/man/1/uptime

tao-of-tmux Documentation, K% v1.0.2

10.4.2 Clock styling

You can style the color of the tmux clock via:

set-option -g clock-mode-colour white

Reminder: Clock mode can be opened with $ tmux clock-mode or Prefix + t. Pressing any key will exit

clock mode.

10.4.3 Prompt colors

The benefit of wrapping your brain around this styling is you will see it message-command-style, message

style and so on.

Let’ s try this:

$ tmux set-option -ag message-style fg=yellow,blink\; set-option -ag message-style bg=black

techo 'hi'

Top:

default scheme for prompt. Bottom: newly-styled.

10.5 Styling while using tmux

So, you want to customize your tmux status line before you write the changes to your config file.

Start by grabbing your current status line section you want to edit, for instance:

$ tmux show-options -g status-left

> status-left "[#S] "

$ tmux show-options -g status-right

> status-right " "#{=21:pane_title}" JH:]M Jd-}b-Jy"

Also, you can try to snip off the variable with | cut -d4' ' -f2-:
$ tmux show-options -g status-left | cut -d' ' -f2-

> n [#S] n

$ tmux show-options -g status-right | cut -d' ' -f2-

> " "g{=21:pane_title}" JH:JM Jd-}b-}y"

Then, add the options to your configuration.

To be sure your configuration fully works, you can start it in a different server via tmux -Lrandom, verify

the settings, and close it. This is helpful to make sure your config file isn’ t missing any styling info.

54 Chapter 10. K74 (Status bar) FaPME(LIRE {#status-bar}

tao-of-tmux Documentation, & %5 v1.0.2

10.6 Toggling status line

The tmux status line can be hidden, as well. Turn it off:

$ tmux set-option status off

And, turn it on:

$ tmux set-option status on

The above is best for scripting, but if you’ re binding it to a keyboard shortcut, toggling, or reversing the

current option, it can be done via omitting the on/off value:

$ tmux set-option status

Bind toggling status line to Prefix + q:

$ tmux bind-key q set-option status

10.7 Example: Default config

This is an example of the default config you see if your tmux configuration has no status styling.

status on

status-interval 15
status-justify left
status-keys vi

status-left "[#S] "
status-left-length 10
status-left-style default
status-position bottom
status-right " "#{=21:pane_title}" JH:/M Jd-/b-}y"
status-right-length 40
status-right-style default
status-style fg=black,bg=green

10.8 Example: Dressed up {#status-bar-example-dressed-up}

I[](images/09-status-bar/dressed up.png)

10.6. Toggling status line

55

tao-of-tmux Documentation, K% v1.0.2

status on

status-interval 1

status-justify centre

status-keys vi

status-left "#[fg=green]#H #[fg=black]e #[fg=green,bright]#(uname -r | cut -c 1-6)#[default]"

status-left-length 20

status-left-style default

status-position bottom

status-right "#[fg=green,bg=default,bright]#(tmux-mem-cpu-load) #[fg=red,dim,bg=default]
—#(uptime | cut -f 4-5 -d " " | cut -f 1 -d ",") #[fg=white,bg=default]/a%l:%M:%S %p#[default]
—#[fg=bluel %Y-%m-7d"

status-right-length 140

status-right-style default

status-style fg=colour136,bg=colour235

default window title colors
set-window-option -g window-status-fg colour244 # basel

set-window-option -g window-status-bg default

active window title colors
set-window-option -g window-status-current-fg colour166 # orange

set-window-option -g window-status-current-bg default

Configs can print the output of an application. In this example, tmux-mem-cpu-load is providing system

statistics in the right-side section of the status line.
To build tmux-mem-cpu-load, you have to install CMake and have a C++ compiler, like clang or GCC.

On Ubuntu, Debian, and Mint machines, you can do this via $ sudo apt-get install cmake

build-essential. On macOS w/ brew via $ brew install cmake.

Source: https://github.com/tony/tmux-config

10.9 Example: Powerline

t 1d 51m 58s 2017-01-16 GICEHEY R i mbpl5

The most full-featured solution available for tmux status lines is powerline, which heavily utilizes the shell

command outputs, not only to give direct system statistics, but also to generate graphical-like styling.

To get the styling to work correctly, special fonts must be installed. The easiest way to use this is to install

powerline fonts, a collection of fixed width coder fonts patched to support Wingdings-like symbols.

Installation instructions are on Read the Docs. For a better idea:

56 Chapter 10. K74 (Status bar) FaPME(LIRE {#status-bar}

https://github.com/thewtex/tmux-mem-cpu-load
https://cmake.org/
http://clang.llvm.org/
https://gcc.gnu.org/
http://brew.sh/
https://github.com/tony/tmux-config
https://github.com/powerline/powerline/
https://github.com/powerline/fonts
https://en.wikipedia.org/wiki/Wingdings
https://powerline.readthedocs.io/en/latest/installation.html

tao-of-tmux Documentation, & %5 v1.0.2

$ pip install --user powerline-status psutil

psutil, a required dependency of powerline, is a cross-platform tool to gather system information.

Assure you properly configured python with your PATHs, and try this:

set -g status-interval 2

set -g status-right '#(powerline tmux right)'

10.10 Summary

Configuring the status line is optional. It can use the output of programs installed on your system to give
you specialized information, such as CPU, ram, and I/O usage. By default, you’ 1l at least have a window

list and a clock.

In addition, you can customize the colors of the status line, clock, and prompt. By default, it’ s only a green

bar with dark text, so take some time to customize yours, if you want, and save it to your configuration.

In the next chapter, we will go into the command line and scripting features of tmux.

10.10. Summary 57

https://github.com/giampaolo/psutil

tao-of-tmux Documentation, K% v1.0.2

58 Chapter 10. K74 (Status bar) FaPME(LIRE {#status-bar}

cHAPTER 11

tmux BYRIZAS{k, (Scripting) {#scripting-tmux}

tmux F AT PREETT ORI AR %

FRAEBIDA—2eRA%, DA tmux FRA RORTE], ARl DACREE MR A SO . R R S
REZEMNE, BELHFRA AR HRiFH (cheatsheets)

11.1 455 (Aliases) {#aliases}

tmux MAAEMRLZHE (alias). A4S, #iH $ tmux attach AR APAIAT $ tmux attach-session
W HETERFHEICN, NG H R

If you know the full name of the command, if you were to chop the hyphen (-) from the command and add

the first letter of the last word, you’ d get the shortcut, e.g., swap-window is swapw, split-window is splitw.

11.2 Pattern matching {#fnmatch}

In addition to aliases, tmux commands and arguments may all be accessed via fnmatch(3) patterns.

For instance, you need not type $ tmux attach-session every time. First, there’ s the alias of $ tmux
attach, but additionally, more concise commands can be used if they partially match the name of the
command or the target. tmux’ s pattern matching allows $ tmux attac, $ tmux att, $ tmux at and $

tmux a to reach $ tmux attach.

Every tmux command has shorthands; let’ s try this for $ tmux new-session:

59

http://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html

tao-of-tmux Documentation, K% v1.0.2

$ tmux new-session

$ tmux new-s

and so on, until:

$ tmux new-

ambiguous command: new-, could be: new-session, new-window

The limitation, as seen above, is command matches can collide. Multiple commands begin with new-. So, if
you wanted to use matches, $ tmux new-s for a new session or $ tmux new-w for a new window would be
the most efficient way. But, the alias of $ tmux new for new session and $ tmux neww for new windows is

even more concise than matching, since the special alias exists.

Patterns can also match targets with window and session names. For instance, a session named mysession

can be matched via mys:

$ tmux attach -t mys

Matching targets will fail if a pattern matches more than one item. If 2 sessions exist, named mysession
and mysession2, the above command would fail. To target either session, the complete target name must

be specified.

11.3 Targets {#targets}

If a command allows target specification, it’ s usually done through -t.
Think of targets as tmux’ s way of specifying a unique key in a relational database.
What I use to help me remember:

So, sessions are represented by dollar signs ($) because they hold your projects (ostensibly where you make

money or help someone else do it).

Windows are represented by the at sign (@). So, windows are like referencing / messaging a user on a social

networking website.

Panes are the fun one, represented by the percent sign (%), like the default prompt for csh and tesh. Hey,

makes sense, since panes are pseudoterminals!

When scripting tmux, the symbols help denote the type of object, but also serve as a way to target something

deeply, such as the pane, directly, without needing to know or specify its window or session.

Here are some examples of targets, assuming one session named mysession and a client at /dev/ttys004:

60 Chapter 11. tmux BYBIA{L (Scripting) {#scripting-tmux}

https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/At_sign
https://en.wikipedia.org/wiki/C_shell
https://en.wikipedia.org/wiki/Tcsh

tao-of-tmux Documentation, & %5 v1.0.2

11.3.1 attach-session [-t target-session]

$ tmux attach-session -t mysession

11.3.2 detach-client [-s target-session] [-t target-client]

$ tmux detach-client -s mysession -t /dev/ttys004

If within client, -t is assumed to be current client

$ tmux detach-client -s mysession

11.3.3 has-session [-t target-session]

$ tmux has-session -t mysession

Pattern matching session mame

$ tmux has-session -t mys

11.3.4 $ tmux kill-session [-t target-session]

$ tmux kill-session -t mysession

11.3.5 $ tmux list-clients [-t target-session]

$ tmux list-clients -t mysession

11.3.6 $ tmux lock-client [-t target-client]

$ tmux lock-clients -t /dev/ttys004

11.3.7 $ tmux lock-session [-t target-session]

$ tmux lock-session -t mysession

11.3. Targets {#targets}

61

tao-of-tmux Documentation, K% v1.0.2

11.3.8 $ tmux new-session [-t target-session]

tmux new-session -t newsession

Create new-session in the background

tmux new-session -t newsession -d

11.3.9 $ tmux refresh-client [-t target-client]

tmux refresh-client -t /dev/ttys004

11.3.10 $ tmux rename-session [-t target-session] session-name

tmux rename-session -t mysession renamedsession

If within attached session, -t is assumed

tmux rename-session renamedsession

11.3.11 $ tmux show-messages [-t target-client]

tmux show-messages -t /dev/ttys004

11.3.12 $ tmux suspend-client [-t target-client]

tmux suspend-client -t /dev/ttys004

If already in client

tmux suspend-client

Bring client back to the foreground

fg

11.3.13 $ tmux switch-client [-c target-client] [-t target-session]

tmux suspend-client -c /dev/ttys004 -t othersession

(continues on next page)

62

Chapter 11. tmux BYBIA{L (Scripting) {#scripting-tmux}

tao-of-tmux Documentation, & %5 v1.0.2

Within current client, -c is assumed

$ tmux suspend-client -t othersession

11.4 Formats {#formats}

tmux provides a minimal template language and set of variables to access information about your tmux

environment.
Formats are specified via the -F flag.

You know how template engines, such as mustache, handlebars ERB in ruby, jinja2 in python, twig in PHP,

and JSP in Java, allow template variables? Formats are a similar concept.

The FORMATS (variables) provided by tmux have expanded greatly since version 1.8. Some of the most
commonly used formats as of tmux 2.3 are listed below. See the appendiz section on formats for a complete
list.

Let’ s try to output it:

$ tmux list-windows -F "#{window_id} #{window_namel}"

> @0 zsh

Here’ s a cool trick to list all panes with the x and y coordinates of the cursor position:

$ tmux list-panes -F "#{pane_id} #{pane_current_command} \
#{pane_current_path} #{cursor_x},#{cursor_yl}"

> %0 vim /Users/me/work/tao-of-tmux/manuscript 0,34
%1 tmux /Users/me/work/tao-of-tmux/manuscript 0,17

%2 man /Users/me/work/tao-of-tmux/manuscript 0,0

Variables are specific to the objects being listed. For instance:
Server-wide variables: host, host_short (no domain name), socket_path, start_time and pid.

Session-wide variables: session_attached, session_activity, session_created, session_height,

session_id, session_name, session_width, session_windows and all server-wide variables.

Window variables: window_activity, window_active, window_height, window_id, window_index,

window_layout, window_name, window_panes, window_width and all session and server variables.

Pane variables: cursor_x, cursor_y, pane_active, pane_current_command, pane_current_path,

pane_height, pane_id, pane_index, pane_width, pane_pid and all window, session and server variables.

This book focuses on separating the concept of server, sessions, windows, and panes. With the knowledge

of targets and formats, this separation takes shape in tmux’ s internal attributes. If you list-panes all

11.4. Formats {#formats} 63

https://mustache.github.io/
http://handlebarsjs.com/
http://ruby-doc.org/stdlib-2.3.3/libdoc/erb/rdoc/ERB.html
http://jinja.pocoo.org/docs/dev/
http://twig.sensiolabs.org/
https://en.wikipedia.org/wiki/JavaServer_Pages

tao-of-tmux Documentation, K% v1.0.2

variables up the ladder, including window, session and server variables are available for the panes being
listed. Try this:

$ tmux list-panes -F "pane: #{pane_id}, window: #{window_id}, \
session: #{session_id}, server: #{socket_pathl}"

> pane: %35, window: @13, session: $6, server: /private/tmp/tmux-501/default
pane: %38, window: @13, session: $6, server: /private/tmp/tmux-501/default
pane: %36, window: @13, session: $6, server: /private/tmp/tmux-501/default

Listing windows isn’ t designed to display variables for pane-specific properties. Since a window is a collection

of panes, it can have 1 or more panes open at any time.

$ tmux list-windows -F "window: #{window_id}, panes: #{window_panes} \
pane_id: #{pane_id}"

> window: @15, panes: 1 pane_id: %40
window: @13, panes: 3 pane_id: %36
window: @25, panes: 1 pane_id: %50

This will show the window ID, prefixed by an @ symbol, and the number of panes inside the window.

Surprisingly, pane_id shows up via list-windows, as of tmux 2.3. While this output occurs in this version
of tmux, it’ s undefined behavior. It’ s advised to keep use of -F scoped to the objects being listing when
scripting to avoid breakage. For instance, if you want the active pane, use #{pane_active} via $ tmux

list-panes -F "#{pane_activel}".

By default, 1ist-panes will only show panes in a window, unless you specify -a to output all on a server or

-s [-t session-name] for all panes in a session:

$ tmux list-panes -s -t mysession
> 1.0: [176x29] [history 87/2000, 21033 bytes] %0
1.1: [87x6] [history 1814/2000, 408479 bytes] %1 (active)
1.2: [88x6] [history 1916/2000, 464932 bytes] %2
2.0: [176x24] [history 9/2000, 2262 bytes] %13
2.1: [65x11] [history 55/2000, 7395 bytes] %14

And the -t flag lists all panes in a window:

$ tmux list-panes -t @O0

> 0: [176x29] [history 87/2000, 21033 bytes] %0
1: [176x36] [history 1790/2000, 407807 bytes] %1 (active)
2: [88x6] [history 1916/2000, 464932 bytes] %2

The same concept applies to list-windows. By default, The -a flag will list all windows on a server, -t lists

windows within a session, and omitting -t will only list windows within the current session inside tmux.

64 Chapter 11. tmux BYBIA{L (Scripting) {#scripting-tmux}

tao-of-tmux Documentation, & %5 v1.0.2

$ tmux list-windows
> 1: zshx (3 panes) [176x36] [layout f9a4,176x36,0,0[176x29,0,0,0,176x6,0,30{87x6,0,30,1,88x6,
—88,30,2}]] @0 (active)
2: zsh- (5 panes) [176x36] [layout 55ef,176x36,0,0[176x24,0,0,13,176x11,0,25{55x11,0,25,14,
-.58x11,56,25[58x7,56,25,16,58x3,56,33,17] ,61x11,115,25,15}]] @6

11.5 Controlling tmux {#send-keys}

tmux allows sending keys, including Ctrl via C- or =, alt (Meta) via M-, and special key names. Here’ s a

list of special keys straight from the manual:

Up, Down, Left, Right, BSpace, BTab, DC (Delete), End, Enter, Escape, F1 to F12, Home, IC (Insert),
NPage/PageDown/PgDn, PPage/PageUp/PgUp, Space, and Tab.

If special keys are not matched, the defined behavior is to send it as a string to the pane, character by

character.

For this example, we will use send-keys through tmux prompt, because omitting target (-t) will direct the

command to the current pane, but the keys sent will sometimes print before the prompt.
Open tmux command prompt via Prefix + : and type this after the ::
send-keys echo 'hi'

Hit enter. This inserted hi into the current active pane. You can also use targets to specify which pane to

send it to.

Let’ s now try to send keys to another pane in our current window. Create a second pane via splitting the
window if one doesn’ t exist. You can also do this exercise outside of tmux or inside a scripting file and

running it.

Grab a pane ID from the output of list-panes:

$ tmux list-panes

> 0: [180x57] [history 87/2000, 21033 bytes] %0
1: [89x14] [history 1884/2000, 509864 bytes] %1 (active)
2: [90x14] [history 1853/2000, 465297 bytes] %2

%2 looks good. Replace %2 with the pane you want to target. This sends cal to the input:

$ tmux send-keys -t %2 'cal'

Nice, let’ s cancel that out by sending a SIGINT:

$ tmux send-keys -t %2 'C-c'

11.5. Controlling tmux {#send-keys} 65

https://en.wikipedia.org/wiki/Unix_signal#SIGINT

tao-of-tmux Documentation, K% v1.0.2

This cancelled the command and brought up a fresh input. This time, let’ s send an Enter keypress to run
cal(1).

$ tmux send-keys -t %2 'cal' 'Enter'

This outputs in the adjacent pane.

h-3.2$ tmux list-panes
[176x25] [history 1/2000, 283 bytes] %13 sh-3.2$ cal
[55x10] [history 55/2000, 7395 bytes] %14 March 2017
[58x5] [history 38/2000, 4457 bytes] %16 (active) Su Mo Tu We Th Fr Sa
[58x4] [history 18/2000, 2653 bytes] %17 1 2 3 4
[61x10] [history 54/2000, 5975 bytes] %15 5 6 7 8 9 10 11
-3.2% 12 13 14 15 16 17 18
19 20 21 22 23 24 25
sh-3.2$ tmux send-keys -t %15 'cal' 'Enter' 26 27 28 29 30 31

sh-3.25 |

S
0
1
2:
3!
4
S

h

sh-3.2$%

left: Listing panes, Bottom-left: Sending keys to right pane, Right: Output of cal(1).

11.6 Capturing pane content {#capture-pane}

$ tmux capture-pane will copy a panes’ contents.

By default, the contents will be saved to tmux’ s internal clipboard, the paste buffer. You can run
capture-pane within any pane, then navigate to an editor, paste the contents (don’ t forget to :set
paste and go into insert mode with i in vim), and save it to a file. To paste, use Prefix +] inside the

pane you’ re pasting into.

You can also add the -p flag to print it to stdout. From there, you could use redirection to place the output

into a file. Let’ s do >> so we don’ t accidentally truncate a file:

$ tmux capture-pane -p >> ./test

As an alternative to redirection, you can also use save-buffer. The -a flag will get you the same behavior

as appended output direction.

$ tmux save-buffer -a ./test

To check what’ s inside:

$ cat ./test

Like with send-keys, targets can be specified with -t. Let’ s copy a pane into tmux’ s clipboard (“paste

buffer”) and paste it into a text editor in a third pane:

66 Chapter 11. tmux BYBIA{L (Scripting) {#scripting-tmux}

https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_07

tao-of-tmux Documentation, & %5 v1.0.2

2$ tmux list-panes

[0

2$ tmux list-panes =3)a
176x24] [history 9/2000, 2262 byte [176x24] [history 9/2000, 2262 bytes] %13
5x11] [history 55/2000, 7395 bytes] A [55111] [history 55/2000, 7395 bytes]
8x7] [history 62/2000, 9669 bytes] ¢ ive : [58x7] [history 62/2000, 9669 bytes] ¢
58x3] [history 593/2000, 128412 byte [58x3] [history 593/2000, 128412 bytes]
61x11] [history 63/2000, 6942 bytes] [61x11] [history 63/2000, 6942 bytes]

$ sh-3.2%

-3.
[
[5
[5
[
[

w A WN RO

-3.2%$ tmux capture-pane -t %16
-3.25 || [No Namel [+] [unix/] [/Users/mel

:set paste TOp-

left: Listing panes, Bottom-left: Capturing pane output of top-left pane, Right: Pasting buffer into vim.

Remember, you can also copy, paste, and send-keys to other windows and sessions also. Targets are server-

wide.

11.7 Summary

tmux has a well-devised and intuitive command system, enabling the user to access bread and butter func-
tionality quickly. At the same time, tmux provides a powerful way of retrieving information on its objects
between list-panes, list-windows and list-sessions and formats. This makes tmux not only accessible

and configurable, but also scriptable.

The ability to retrieve explicitly and reliably, from a session down to a pane. All it takes is a pane’ s ID
to capture its contents or even send it keys. Used by the skilled programmer, scripting tmux can facilitate
orchestrating terminals in ways previously deemed unrealistic; anything from niche shell scripts to monitor
and react to behavior on systems to high-level, intelligent and structured control via object oriented libraries,

like libtmux.

In the next chapter, we delve into optimizations that showcase the latest generation of unix tools that build
upon old, time-tested concepts, like man pages and piping, while maintaining portability across differences in
platforms and graceful degradation to ensure development tooling works on machines missing optional tools.
Also, the chapter will introduce session managers, a powerful, high-level tool leveraging tmux’ s scripting

capabilities to consistently load workspace via a declarative configuration.

11.7. Summary 67

https://libtmux.git-pull.com
https://en.wikipedia.org/wiki/Man_page
https://en.wikipedia.org/wiki/Pipeline_(Unix)

tao-of-tmux Documentation, K% v1.0.2

68 Chapter 11. tmux BYBIA{L (Scripting) {#scripting-tmux}

CHAPTER 12

INFEIG (tips and tricks) {#tips-and-tricks}

12.1 Read the tmux manual in style

$ man tmux is the command to load up the man page for tmux. You can do the same to find instructions

for any command or entity with a manpage entry; here are some fun ones:

$ man less
$ man man

$ man strftime

most(1), a solid PAGER, drastically improves readability of manual pages by acting as a syntax highlighter.

BSD General Commands Manual

NAME
tmux -- terminal multiplexer -- terminal multiplexer

SYNOPSIS
tmux [~ file t-name] aC INE] [

1L C 1]

DESCRIPTION
tmux is a t multip it 1s is a terminal multiplexer: it enables a number of terminals to be
tmux may created, accessed, and controlled from a single screen, may be
then later detached from a screen and continue running in the background, then later
reattached.

When is started it creates a new with a single

Press 'Q' to quit, H' for help, and SPACE to scroll. 1eft:

man, version 1.6¢c on macOS Sierra. right: MOST v5.0.0

To get this working, you need to set your PAGER environmental variable to point to the MOST binary. You

can test it like this:

69

http://www.jedsoft.org/most/
http://pubs.opengroup.org/onlinepubs/9699919799//utilities/man.html
https://en.wikipedia.org/wiki/Environment_variable

tao-of-tmux Documentation, K% v1.0.2

$ PAGER=most man 1ls

If you found you like most, you’ 1l probably want to make it your default manpage reader. You can do this
by setting an environmental variable in your “rc¢” (Run Commands) for your shell. The location of the file
depends on your shell. You can use $ echo $SHELL to find it on most shells). In Bash and zsh, these are

kept in ~/.bashrc or ~/.zshrc, respectively:

export PAGER="most"

I often reuse my configurations across machines, and some of them may not have most installed, so I will

have my scripting only set PAGER if most is found:

#!/bin/sh

if command -v most > /dev/null 2>&1; then
export PAGER="most"
fi

Save this in a file, for example, to ~/.dot-config/most.sh.

Then you can source it in via your main rc file.

source $HOME/.dot-config/most.sh

Patterns like these help make your dot-configs portable, cross-platform, and modular. For inspiration, you

can fork, copy, and paste from my permissively- licensed config at https://github.com/tony/.dot-config.

12.2 Log tailing

Not tmux specific, but powerful when used in tandem with it, you can run a follow (-f) using tail(1).

More modern versions of tail have the -F (capitalized), which checks for file renames and rotation.

On OS X, you can do:

$ tail -F /var/log/system.log

and keep it running in a pane while log messages come in. It’ s like Facebook newsfeed for your system,

except for programmers and system administrators.

For monitoring logs, multitail provides a terminal-friendly solution. It’ d be an Inception moment, because

you’ d be using a log multiplexer in a terminal multiplexer.

70 Chapter 12. /I35 (tips and tricks) {#tips-and-tricks}

https://en.wikipedia.org/wiki/Run_commands
https://en.wikipedia.org/wiki/Dot_(command)
https://github.com/tony/.dot-config
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/tail.html
https://vanheusden.com/multitail/
http://www.imdb.com/title/tt1375666/

tao-of-tmux Documentation, & %5 v1.0.2

12.3 File watching {#file-watching}

In my never-ending conquest to get software projects working in symphony with code changes, I’ ve come to
test many file watching applications and patterns. Pursuing the holy grail feedback loop upon file changes,

I’ ve gradually become the internet’ s unofficial connoisseur on them.

File watcher applications wait for a file to be updated, then execute a custom command, such as restarting
a server, rebuilding an application, running tests, linters, and so on. It gives you, as a developer, instant
feedback in the terminal, empowering a tmux workspace to have IDE-like features, without the bloat, memory,

and CPU fans roaring.
I eventually settled on entr (1), which works superbly across Linux distros, BSDs and OS X / macOS.
The trick to make entr work is to pipe a list of files into it to watch.

Let’” s search for all . go files in a directory and run tests on file change:

$ 1s -d *.go | entr -c go test ./...

Sometimes, we may want to watch files recursively, but we need it to run reliably across systems. We can’
t depend on ** existing to grab files recursively, since it’ s not portable. Something more POSIX-friendly

would be find . -print | grep -i '.*[.]go':

$ find . -print | grep -i '.*[.]Jgo' | entr -c go test ./...

To only run file watcher if entr is installed, let’ s wrap in a conditional command -v test:

$ if command -v entr > /dev/null; then find . -print | grep -i '.*[.Jgo' | \

entr -c go test ./...; fi

And have it fallback to go test in the event entr isn’ t installed. This allows your command to degrade

gracefully. You’ 1l thank me when you use this snippet in conjunction with a session manager:

$ if command -v entr > /dev/null; then find . -print | grep -i '.*[.Jgo' | \
entr -c go test ./...; else go test ./...; fi

If the project is a team or open source project, where a user never used the command before and could be
missing a required software package, we can give a helpful message. This shows a notice to the user to install

entr if not installed on the system:

$ if command -v entr > /dev/null; then find . -print | grep -i '.*[.Jgo' | \
entr -c go test ./...; else go test ./...; echo "\nInstall entr(1l) to \"
echo "run tasks when files change. \nSee http://entrproject.org/"; fi

Here’ s why you want patterns like above: You can put it into a Makefile and commit it to your project’
s VCS, so you and other developers can have access to this reusable command across different UNIX-like

systems, with and without certain programs installed.

12.3. File watching {#file-watching} 71

http://entrproject.org/
https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://golang.org/cmd/go/#hdr-Test_packages
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/command.html
https://en.wikipedia.org/wiki/Makefile
https://en.wikipedia.org/wiki/Version_control

tao-of-tmux Documentation, &% v1.0.2

Note: You may have to convert the indentation within the Makefiles from spaces to tabs.

Let’ s see what a Makefile with this looks like:

watch_test:
if command -v entr > /dev/null; then find . -print | grep -1 '.*[.]go' | entr -c go test ./
<...; else go test ./...; echo "\nInstall entr(1) to run tasks when files change. \nSee http://
—entrproject.org/"; fi

To run this, do $ make watch_test in the same directory as the Makefile.

But it’ s still a tad bloated and hard to read. We have a couple tricks at our disposal. One would be to add

continuation to the next line with a trailing backslash (\):

watch_test:
if command -v entr > /dev/null; then find . -print [\
grep -t '.*[.]Jgo' | entr -c go test ./...; \
else go test ./...; \
echo "\nInstall entr(1) to run tasks on file change. \n"; \

echo "See http://entrproject.org/"; fi

Another would be to break the command into variables and make subcommands. So:

WATCH_FILES= find . -type f -not -path '*/\.*' | \
grep -i '.*[.]go$$' 2> /dev/null

test:
go test $(test) ./...

entr_warn:
Q@echo "-——————m———-m oo "
Q@echo " ! File watching functionality non-operational ! "
@echo " "
@echo " Install entr(l) to run tasks on file change. "
Q@echo " See http://entrproject.org/ "

@echo "————————mmm "

watch_test:
if command -v entr > /dev/null; then ${WATCH FILES} | \
entr —c $(MAKE) test; else $(MAKE) test entr_warn; ft

$ (MAKE) is used for portability. One reason is recursive calls, such as here. On BSD systems, you may try
invoking make via gmake (to call GNU Make specifically). This happened to me, while building PDFs for
the book AlgoXY. I had to write a patch to make it properly use $(MAKE) for recursive calls.

The $(test) after go test allows passing a shell variable with arguments in it. So, you could do make

watch_test test='-i'. For examples of a similar Makefile in action, see the one in my tmuxp project.

72 Chapter 12. /I35 (tips and tricks) {#tips-and-tricks}

https://www.gnu.org/software/make/
https://github.com/liuxinyu95/AlgoXY/
https://github.com/liuxinyu95/AlgoXY/pull/16
https://github.com/tony/tmuxp/blob/master/Makefile

tao-of-tmux Documentation, & %5 v1.0.2

The project is licensed BSD (permissive), so you can grab code and use it in compliance with the LICENSE.

One more thing, let’ s say you’ re running a server, like Gin, Iris, or Echo. entr -c likely won’ t be
restarting the server for you. Try entering the -r flag to send a SIGTERM to the process before restarting it.

Combining the current -c flag with the new -r will give you entr -rc:

run:

go run main.go

watch_run:
if command -v entr > /dev/null; then ${WATCH_FILES} | \
entr —c $(MAKE) run; else $(MAKE) run entr_warn; fi

12.4 Session Managers {#session-manager}

For those who use tmux regularly to perform repetitive tasks, such as opening the same software project,

viewing the same logs, etc., frequent tasks will often lead to the creation of tmux scripts.

A user can use plain shell scripting to build their tmux sessions. However, scripting is error prone, hard to
debug, and requires tmux to split windows into panes in a certain order. In addition, there’ s the burden of

assuring the shell scripts are portable.

A declarative configuration in YAML or JSON configuration abstracts out the commands, layout, and
options of tmux. It prevents the mistakes and repetition scripting entails. These applications are called
tmux session managers, and in different ways, they programmatically create tmux workspaces by running a

series of commands based on a config.

Teamocil and Tmuxinator are the first ones I tried. By far, the most popular one is tmuxinator. They are
both programmed in Ruby. There’ s also tmuxomatic, where you can “draw” your tmux sessions in text

and have tmuxomatic build the layout.

I sort of have a home team advantage here, as I’ m author of tmuxp. Already having used teamocil and
tmuxinator, I wrote my own in python instead of ruby, with many more features. For one, it builds on top
of libtmux, a library which abstracts tmux server, sessions, windows and panes to build the state of tmux
sessions. In addition, it has a naive form of session freezing, support for JSON, more flexible configuration
options, and it will even offer to attach exiting sessions, instead of redundantly running script commands

against the session if it’ s already running.

So, in tmuxp, we’ 1l hollow out a tmuxp config directory with $ mkdir ~/.tmuxp then create a YAML file
at ~/.tmuxp/test.yaml:

session_name: 4-pane-split
windows:
- window_name: dev window

layout: tiled

(continues on next page)

12.4. Session Managers {#session-manager} 73

https://github.com/tony/tmuxp/blob/master/LICENSE
https://github.com/gin-gonic/gin
https://github.com/kataras/iris
https://github.com/labstack/echo
https://en.wikipedia.org/wiki/Unix_signal
https://github.com/remiprev/teamocil
https://github.com/tmuxinator/tmuxinator
https://github.com/oxidane/tmuxomatic
https://github.com/tony/tmuxp
https://github.com/tony/libtmux

tao-of-tmux Documentation, &% v1.0.2

(£ k1)
shell_command_before:
- cd ~/ # run as a first command in all panes
panes:
- shell_command: # pane no. 1
- cd /var/log # run multiple commands in this pane

- 1s -al | grep \.log

- echo second pane # pane no. 2
- echo third pane # pane no. 3
- echo forth pane # pane no. 4

gives a session titled 4-pane-split, with one window titled dev window with 4 panes in it. 3 in the home

directory; the other is in /var/log and is printing a list of all files ending with .log.

To launch it, install tmuxp and load the configuration:

$ pip install --user tmuxp

$ tmuxp -V # verify tmuzp is installed, if not you need to fixz your "PATH"
to point to your python bin folder. More help below.

$ tmuxp load ~/.tmuxp/test.yaml

If tmuxp isn’ t found, there is a troubleshooting entry on fizing your paths in the appendix.

12.5 More code and examples {#example-projects}

I’ ve dusted off a C++ space shooter and a new go webapp I’ ve been playing with. They’ re licensed

under MIT so, you can use them, copy and paste from them, etc:

o C++14 space shooter minigame - side scrolling shmup demo (sdl2, cmake, json resource manifests,
Linux/BSD/OS X compatible)

o Go tmux web frontend - display current tmux session and window information via browser (gin, bower)
Both support tmuxp load . within the project directory to load up the project.

Make sure to install entr (1) beforehand!

12.6 tmux-plugins and tpm

tmux-plugins and tmux package manager are a suite of tools dedicated to enhancing the experience of tmux

users.
e tmux-resurrect: Persists tmux environment across system restarts.

e tmux-continuum: Continuous saving of tmux environment. Automatic restore when tmux is started.

Automatic tmux start when computer is turned on.

74 Chapter 12. /I35 (tips and tricks) {#tips-and-tricks}

https://github.com/tony/tot-cpp-shmup
https://en.wikipedia.org/wiki/Shoot_%27em_up
https://github.com/tony/tot-go-webapp
https://github.com/gin-gonic/gin
https://bower.io/
http://entrproject.org/
https://github.com/tmux-plugins
https://github.com/tmux-plugins/tpm
https://github.com/tmux-plugins/tmux-resurrect
https://github.com/tmux-plugins/tmux-continuum

tao-of-tmux Documentation, & %5 v1.0.2

e tmux-yank: Tmux plugin for copying to system clipboard. Works on OSX, Linux and Cygwin.

e tmux-battery: Plug and play battery percentage and icon indicator for Tmux.

12.6. tmux-plugins and tpm 75

https://github.com/tmux-plugins/tmux-yank
https://github.com/tmux-plugins/tmux-battery

tao-of-tmux Documentation, K% v1.0.2

76 Chapter 12. /I35 (tips and tricks) {#tips-and-tricks}

CHAPTER 13

RS RE (Takeaway) {#takeaway}

XA, RATRA TR LA R R tmux. FEEBORZ MG tux, TEAREER W6 0
FRREBIAACAZ . A UM BEAR towxe BSARME, AL S T B2 R I R RS & K AR

tmux’ s userbase varies in skill level. Some readers of this book may have just learned how to use the Prefix
key yesterday. Others are looking to tweak their configurations and host it in their “dot files” on github.
There also exists a very clever hacker who utilizes the advanced scripting capabilities tmux offers to pilot

the terminal in ways previously thought impossible.

We’ ve covered the server, session, window, and pane concepts. Panes are shells, AKA pseudoterminals or
PTYs. The command system. That configuration is basically a file filled with commands. An overview of
the target system lets you specify objects to interact with tmux commands. A breeze through formats, a
template system with variables to retrieve information on tmux’ s current state. How to send keystrokes
and copy from tmuzx panes programmatically. A lot of terminal tricks that work across platforms and well
with tmux, including a file watching workflow to run linting, testing, and build commands on file changes.
Two permissively licensed open source projects for demonstration. A tmux configuration you can copy and

paste from. An object oriented tmux API wrapper and a tmux session manager.

If you liked this book, please leave a review on Amazon and Goodreads. I would also appreciate you leaving

something in my tip jar. I am an independent software developer and could use all the help I can get.

If you found an error or have a suggestion, please contact me at tao.of.tmux@git-pull.com. I want this
book to be the best it can be. If you are having technical difficulties with Kindle, please send me your receipt

and I will comp you a leanpub coupon.

{backmatter}

77

https://www.github.com/tony/tmux-config
https://libtmux.git-pull.com
https://tmuxp.git-pull.com
http://amzn.to/2gPfRhC
https://www.goodreads.com/book/show/33246223-the-tao-of-tmux
https://www.git-pull.com/support.html

tao-of-tmux Documentation, K% v1.0.2

78 Chapter 13. 2SR5 (Takeaway) {+#ttakeaway}

CHAPTER 14

fisR: jFE (cheatsheets) {#appendix-cheatsheets}

THEEM tmux {E/1Z% (manual pages) # Uk, BEHSHURL T

14.1 4% (Commands)

14.1.1 £i% (Session)
14.1.2 O (Window)

14.1.3 E# (Pane)
14.2 ('r}EEE) Keybindings

14.2.1 iBZtr}ESE (Miscellaneous)

14.2.2 Eiil/#5M (Copy/Paste) #x
14.2.3 £i% (Session) g%
£i%EiBF (Session Traversal)

14.2.4 &0 (Window) #H3x

79

tao-of-tmux Documentation, &% v1.0.2

BOEFH (Window Traversal)

BOFzh (Window Moving)

14.2.5 ®E#R (Pane) #x
HE#RiEHF (Pane Traversal)
E#R#835) (Pane Moving)

HEHRK/NEE (Pane Resizing)
14.3 Formats {#appendix-formats}

14.3.1 Copy / paste
14.3.2 Clients
14.3.3 Panes
14.3.4 Sessions
14.3.5 Windows
14.3.6 Servers

14.3.7 Commands

For $ tmux list-commands.

80 Chapter 14. BffF: ;i&¥ (cheatsheets) {#tappendix-cheatsheets}

CHAPTER 15

fisR: 2% tmux (installation) {#appendix-installation}

15.1 macOS / OS X

15.1.1 brew

$ brew install tmux

15.1.2 macports

$ sudo port install tmux

15.1.3 fink

$ fink install tmux

81

tao-of-tmux Documentation, K% v1.0.2

15.2 Linux

15.2.1 Ubuntu / Mint / Debian, etc.

$ sudo apt-get install tmux

15.2.2 CentOS / Fedora / Redhat, etc.

$ sudo yum install tmux

15.2.3 Arch Linux (pacman)

$ sudo pacman -S tmux

15.2.4 Gentoo (portage)

$ sudo emerge --ask app-misc/tmux

15.3 BSD

15.3.1 FreeBSD

pkg(1)

pkg install tmuz

pkg_add(1)

pkg_add -r tmuzx

15.3.2 OpenBSD

FE OpenBSD 4.6, tJ 777 tmux .

(1 AT) R GEAR B4 -

82 Chapter 15.

FiisR: %% tmux (installation) {#appendix-installation}

https://www.openbsd.org/46.html

tao-of-tmux Documentation, & %5 v1.0.2

pkg_add tmuzx

15.3.3 NetBSD

$ make -C /usr/pkgsrc/misc/tmux install

15.4 Windows 10

EHE T tmux #E Windows 10 i H /)Ny,

15.4. Windows 10

83

tao-of-tmux Documentation, K% v1.0.2

84 Chapter 15. PfR: %% tmux (installation) {#appendix-installation}

CHAPTER 16

Mis%: tmux F£ Windows 10 {§] {#appendix-windows-bash}

FHE windows R47_EZ%E tmux, AJDAMEH MSYS2, B 4% windows [T &4 Linux.,

16.1 & MSYS2

TR MSYS2

pacman

-S tmux

85

http://www.msys2.org/

tao-of-tmux Documentation, K% v1.0.2

$ pacman -S tmux

WL, tmux-2.7-1 OO NEET --
IE R s C &R . .

IEE SRS b, ..

ot (L) tmux-2.7-1

Al A A N 0.50 miB
1P EE F KN 0.00 MiB

HEiTazdEm 2 [v/n] |}

1563281005928

Wl 0 bash 07-16 JE — 20:59
(3] 0 bash |)] 1563281982391

Chapter 16. Pi5#: tmux £ Windows 10 {H {#appendix-windows-bash}

tao-of-tmux Documentation, & %5 v1.0.2

16.2 Window B4 Linux &%

M Windows 10 build 14361 JF44, LA S Window Y Linux T &% i2f7 tmux .

TERE) “Update & security” i “For Developers”, {§ife Developer mode £, 22)5, 771 “Windows
Features”., /RA] PAETT 4648 2 “Turn Windows features on or off”, #R)5+T7F “Windows Subsystem for Linux

(Beta)” IHAE, FHEEEHLN.
BEFRFTIF emd %1 (Run cliexe), i5f7:

C:\Users\tony> bash.exe

R TR — 24, Al — DR P EEE RN L, tmux C2LIT T . WS R DA sudo
apt-get install tmux j’?%ﬁéo

16.2. Window By Linux &4 87

https://blogs.msdn.microsoft.com/commandline/2016/06/08/tmux-support-arrives-for-bash-on-ubuntu-on-windows/

tao-of-tmux Documentation, K% v1.0.2

H O @

Best match

~ Turn Windows features on or off

(]

Control panel

Chapter 16. Pi5#: tmux £ Windows 10 { {#appendix-windg

tao-of-tmux Documentation, & %5 v1.0.2

Turn Windows Features on or off

Windows Features

Turn Windows features on or off

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box reans that only part of the feature is turned on.

5ME 1.0/CIF5 File Sharing Support
SMEB Direct
Telnet Client
TFTP Client
Windows ldentity Foundation 3.5
Windows PowerShell 2.0
Windows Process Activation Service
Windows Subsystem for Linux (Beta)
Windows TIFF IFilter
Work Folders Client
KPS Services

. _XPS Viewer

[]
[]
[]
[]
=
[]
furl

Windows Subsystem for Linux (Beta)

16.2. Window Bj Linux ¥& 4% 89

tao-of-tmux Documentation, &% v1.0.2

Windows Features

Windows completed the requested changes.

Windows needs to reboot your PC te finish installing the requested changes.

completed the requested changes. Restart

90 Chapter 16. Pi5#: tmux £ Windows 10 {H {#appendix-windows-bash}

tao-of-tmux Documentation, & %5 v1.0.2

More

Best match

“ For developers settings
System settings

Settings

If Use developer features

Store

i

MNET Developer Feed

BE What's Pixelated - word picture guessing
rearranging puzzle game and acclaimed

Web

dow By Linux F&4

tao-of-tmux Documentation, K% v1.0.2

Developer features

& Home Use developer features
l These settings are intended for development use only.

Learn more
Update & security

O Windows Store apps
Windows Update Only install apps from the
¥ Windows Defender QO sideload apps
T Backup
D Recovery @ Developer mode

y signed app and dvanced development features.
Activation Some features might not work until you restart your PC.
. - Select

Developer mode in Update & Security

EX Command Prompt - bash.exe — m] X

reserved.

all Ubuntu on Windo dis nonical
i ilable here:

Ubuntu from Windows Store

92 Chapter 16. Pi5#: tmux £ Windows 10 {H {#appendix-windows-bash}

tao-of-tmux Documentation, & %5 v1.0.2

E¥ Command Prompt - bash.exe — [m} X

[Vers
oft Corp

This will install Ubuntu on Windows, distributed by Canon
and 1i d under its terms le here:

few minut "
The username does no o your Windows username.
slusers

e new U

Linux user

EX penguin@DESKTOP-IFILNQD: /mnt/c/Users/tony - O X

The user does not need to m your Windows usern
wslusers

rt moment

bash!

yourusername@COMPUTERNAME-ID321FJ: /mnt/c/Users/username$ tmux

16.2. Window By Linux &4 93

tao-of-tmux Documentation, K% v1.0.2

EX penguin@DESKTOP-IFILNQD: /mnt/c/Users/tony - O X

penguin@DESKTOP-IFJILNQD: /$

tmux!
X FARAIPAYE bash.exe HAEFT tmux T .

FEIX A ubuntu RG B, RV PAE T sudo apt-get install **packagenamex* Zf %577 %% H A 44 Fl
sudo apt-get update && sudo apt-get upgrade ¥ (4.

94 Chapter 16. Pi5#: tmux £ Windows 10 {H {#appendix-windows-bash}

CHAPTER 17

fis: EIEE (troubleshooting) {#appendix-troubleshooting}

17.1 a8 7£ vim chiinsEH IR E353: Nothing in register * §Eix

maCOS / OS X) %E tmux EP@}EH Vim» %ﬁ‘iﬂ:*ﬁmlﬁﬂd‘a tlj}ylb bugv mu%ﬁﬁﬁ bl"eVV rﬁ%

reattach-to-user-namespace fuk[A] i,

$ brew install reattach-to-user-namespace

17.2 o) R&: tmuxp: command not found F0 powerline: command not

found {#troubleshoot-site-paths}

XA MBI AR 23 Y python WP B LENRE) python IR5EHY site package Hfi. 7o, HERAY user site

packages base directory:

$ python -m site --user-base

1F macOS #&4 [, iX£i&k[8| /Users/me/Library/Python/2.7 , B Linux/BSD £k 5] /home/me/ .

local

XL I HATE bin/, fEAMATIME/RE) PATHRLA . —%AE ~/.bashrc #l ~/.zshrc U EFRCE.

95

http://brew.sh
https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard
https://en.wikipedia.org/wiki/PATH_(variable)

tao-of-tmux Documentation, K% v1.0.2

export PATH=/Users/me/Library/Python/2.7/bin:$PATH # macOS w/ python 2.7
export PATH=$HOME/.local/bin:$PATH # Linux/BSD
export PATH=""python -m site --user-base”/bin":$PATH # May work all-around

BEIT—1H terminal, BEffifE . ~/.zshrc / . ~/.bashrc fEY4H(H terminal, PLFEART]VABAT $
tmuxp -V, $ tmuxp load fll $ powerline tmux right Zay4 T .

96

Chapter 17. [f{F: #HRIERE (troubleshooting) {#tappendix-troubleshooting}

CHAPTER 18

Indices and tables

e search

97

	前言
	关于本书
	代码等风格说明
	本书主要内容
	打赏
	书籍形式（Formats）
	勘误说明（Errata） {#errata}
	感谢
	本书跟新和 tmux 的变动

	tmux 初识{#thinking-tmux}
	terminal的窗口管理器
	多任务处理
	在后台运行程序
	Powerful combos
	小节

	Terminal 基础知识（fundamentals） {#terminal-fundamentals}
	POSIX 标准
	Terminal interface
	Terminal emulators
	Shell languages {#shell-languages}
	Shell interpreters (Shells) {#shells}
	小节

	开始使用（Practical usage） {#practical-usage}
	前缀 组合快捷键（ prefix key ）{#prefix-key}
	Session persistence and the server model
	It’s all commands
	小节

	服务（Server ）{#server}
	What? tmux is a server?
	Zero config needed
	Stayin’ alive
	Servers 包含 sessions
	How servers are “named”
	Clients
	Clipboard {#clipboard}
	小节

	会话（Sessions） {#sessions}
	创建会话(sessions)
	tmux 切换会话(sessions)
	重命名会话
	查找存在的会话
	小节

	窗口（Windows） {#windows}
	Creating windows
	Naming windows
	Traversing windows
	Moving windows
	Layouts {#window-layouts}
	Closing windows
	Summary

	面板（Panes） {#panes}
	创建新面板
	面板间切换（Traversing Panes） {#pane-traversal}
	面板最小化（Zoom in ）{#zoom-pane}
	面板大小（Resizing panes） {#resizing-panes}
	Outputting pane to a file
	小节

	配置（Configuration ）{#config}
	重载配置文件 {#reload-config}
	配置文件的工作原理
	服务设置(Server options)
	会话设置(Session options)
	窗口设置(Window options)
	快捷键绑定(Keybindings)

	状态栏（Status bar）和个性化设置 {#status-bar}
	窗口状态的标记
	日期和时间
	Shell command output
	Styling
	Styling while using tmux
	Toggling status line
	Example: Default config
	Example: Dressed up {#status-bar-example-dressed-up}
	Example: Powerline
	Summary

	tmux的脚本化（Scripting）{#scripting-tmux}
	缩写（Aliases） {#aliases}
	Pattern matching {#fnmatch}
	Targets {#targets}
	Formats {#formats}
	Controlling tmux {#send-keys}
	Capturing pane content {#capture-pane}
	Summary

	小技巧（tips and tricks） {#tips-and-tricks}
	Read the tmux manual in style
	Log tailing
	File watching {#file-watching}
	Session Managers {#session-manager}
	More code and examples {#example-projects}
	tmux-plugins and tpm

	总结或最后（Takeaway） {#takeaway}
	附录：清单 （cheatsheets）{#appendix-cheatsheets}
	命令（Commands）
	（快捷键）Keybindings
	Formats {#appendix-formats}

	附录： 安装 tmux （installation） {#appendix-installation}
	macOS / OS X
	Linux
	BSD
	Windows 10

	附录： tmux 在 Windows 10 使用{#appendix-windows-bash}
	通过 MSYS2
	Window 的 Linux 子系统

	附录： 常见问题（troubleshooting） {#appendix-troubleshooting}
	问题：在vim中粘贴时出现 E353: Nothing in register * 错误
	问题：tmuxp: command not found 和 powerline: command not found {#troubleshoot-site-paths}

	Indices and tables

